The ‘GnuPG Made Easy’

Reference Manual

Edition 2.0.0
last updated 12 May 2025

for version 2.0.0

Published by The GnuPG Project
c/o gl0 Code GmbH

Hiittenstr. 61

40699 Erkrath, Germany

Copyright (©) 2002-2008, 2010, 20122018 g10 Code GmbH.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “Copying”.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Short Contents

1 Introduction i 1
2 Preparation.......... .. 3
3 Protocols and Engines L 10
4 Algorithmso 15
5 Error Handling 17
6 Exchanging Data 24
T oM Xt e 33
A The GnuPG UI Server Protocol........................ 116
B How to solve problems 125
C Deprecated Functions i i 126
GNU Lesser General Public License 131
GNU General Public License........... 140
Concept Index . ..o e 151

Function and Data Index. o 154

Table of Contents

1

Introduction................l 1
1.1 Getting Started 1
1.2 Feabures e 1
1.3 OVEIVIEW oottt e e e e 2

Preparation 3
2.1 Header.o 3
2.2 Building the Source i 3
2.3 Largefile Support (LFS).... ..o 4
2.4 Using Automake 5
2.5 Using Libtool 6
2.6 Library Version Check...... o i 6
2.7 Signal Handling 8
2.8 Multi-Threadingo e 8

Protocols and Engines 10
3.1 Engine Version Check......... 0 i i 11
3.2 Engine Information 12
3.3 Engine Configuration.......... i i 14
3.4 OpenPGP ..o 14
3.5 Cryptographic Message Syntax.............cooiiiiiiiiiia... 14
3.6 ASSUAN ..ottt 14

Algorithms..................... .. 15
4.1 Public Key Algorithms......... ... i i 15
4.2 Hash Algorithms....... . . 16

Error Handling 17
5.1 FError Values 17
5.2 EITOT SOUTCES .« oottt et 19
5.3 Error Codes. ..o 20
5.4 Error Strings. 22

Exchanging Data 24
6.1 Creating Data Buffers......... 24

6.1.1 Memory Based Data Buffers............. 24
6.1.2 File Based Data Buffers................. 25
6.1.3 Callback Based Data Buffers...................... 26
6.2 Destroying Data Buffers............ 28
6.3 Manipulating Data Buffers............ oo 28
6.3.1 Data Buffer I/O Operations.............................. 28
6.3.2 Data Buffer Meta-Data.............o .. 29

6.3.3 Data Buffer Convenience Functions....................... 31

ii

7 Contexts 33
7.1 Creating Contexts.ottt 33
7.2 Destroying Contextso 33
7.3 Result Management........... ... i 33
7.4 Context Attributes.o 34

7.4.1 Protocol Selection......... ..., 34
7.4.2 Crypto Engine i 34
7.4.3 How to tell the engine the sender. 35
T4.4 ASCIT ATINOT . . oottt et e 35
7.4.5 Text Mode.o e 35
7.4.6 Offline Mode.o 36
7.4.7 Pinentry Mode. ... 36
7.4.8 Included Certificates ..., 37
7.4.9 Key Listing Mode........ .o i i 38
7.4.10 Passphrase Callback........... i 40
7.4.11 Progress Meter Callbacko, 41
7.4.12 Status Message Callback 42
7.4.13 Context Flags. 42
7414 Locale ... o 45
7.4.15 Additional Logs. ... 46
7.5 Key Managemento 47
7.5.1 Key objects ... 47
7.5.2 Listing Keys ... 55
7.5.3 Information About Keys.......... ... i, 58
7.5.4 Manipulating Keys........ ... i 59
7.5.5 Generating Keys ... 60
7.5.6 Signing Keys. 67
7.5.7 Exporting Keys ... 69
7.5.8 Importing Keys ... 71
7.5.9 Deleting Keys. ... 75
7.5.10 Changing Passphrases.............c.coooiiiiiiiiiiii... 76
7.5.11 Changing TOFU Data ... 76
7.5.12 Advanced Key Editingo L 7
7.6 Crypto Operationsouirie i, 78
T7.6.1 Decrypl. ..o 78
T.6.2 Verify . ..o 82
7.6.3 Decrypt and Verify........ .. i i 88
T.6.4 SN oo 89
7.6.4.1 Selecting Signersc.ooiiiiiiiiiiiiii.. 89
7.6.4.2 Creating a Signature, 89
7.6.4.3 Signature Notation Data 92
T.6.5 EnCrypt. ..o 92
7.6.5.1 Encrypting a Plaintext o L. 93
7.6.6 Random 98
7.6.6.1 How to get random bytes................... 98
7.7 Miscellaneous operationso.eiiiiiiiiiiii.. 99
7.7.1 Running other Programs, 99

7.7.2 Using the Assuan protocol 100

iii

7.7.3 How to check for software updates....................... 101
7.8 Run Control........ ... 103
7.8.1 Waiting For Completion.............. 103
7.8.2 Using External Event Loops.............., 104
7.8.2.1 I/O Callback Interface 104
7.8.2.2 Registering I/O Callbacksoooo... 106
7.8.2.3 1/0O Callback Example ..., 107
7.8.2.4 1/O Callback Example GTK+...................... 112
7.8.2.5 1/0O Callback Example GDK 113
7.8.2.6 I/O Callback Example Qt.......................... 113
7.8.3 Cancellationot 115

Appendix A The GnuPG UI Server Protocol

... 116

A.1 UI Server: Encrypt a Messageoooviiiiiiiiiiii... 116
A.2 Ul Server: Sign a MeSSageoouuiiniiiiiiiiiiiaeann.. 118
A.3 UI Server: Decrypt a Messageooueiiiiiiiieiiiaann. 119
A.4 UI Server: Verify a Messagec.ooiiiiiiiiii ... 119
A.5 UI Server: Specifying the input files to operate on............ 121
A.6 UI Server: Encrypting and signing files....................... 121
A.7 UI Server: Decrypting and verifying files. 121
A.8 UI Server: Managing certificates. 122
A.9 UI Server: Create and verify checksums for files. 122
A.10 Miscellaneous UI Server Commands 123
Appendix B How to solve problems.......... 125
Appendix C Deprecated Functions........... 126
GNU Lesser General Public License............ 131
GNU General Public License 140
Preamble 140
TERMS AND CONDITIONSot 141
How to Apply These Terms to Your New Programs................ 150
Concept Index............. 151

Function and Data Index......................... 154

iv

Chapter 1: Introduction 1

1 Introduction

‘GnuPG Made Easy’ (GPGME) is a C language library that allows to add support for
cryptography to a program. It is designed to make access to public key crypto engines like
GnuPG or GpgSM easier for applications. GPGME provides a high-level crypto API for
encryption, decryption, signing, signature verification and key management.

GPGME uses GnuPG and GpgSM as its backends to support OpenPGP and the Cryp-
tographic Message Syntax (CMS).

1.1 Getting Started

This manual documents the GPGME library programming interface. All functions and data
types provided by the library are explained.

The reader is assumed to possess basic knowledge about cryptography in general, and
public key cryptography in particular. The underlying cryptographic engines that are used
by the library are not explained, but where necessary, special features or requirements by
an engine are mentioned as far as they are relevant to GPGME or its users.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

The documentation for the language bindings is currently not included in this manual.
Those languages bindings follow the general programming model of GPGME but may provide
some extra high level abstraction on top of the GPGME style API. For now please see the
README files in the ‘lang/’ directory of the source distribution.

1.2 Features

GPGME has a couple of advantages over other libraries doing a similar job, and over imple-
menting support for GnuPG or other crypto engines into your application directly.

it’s free software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License (see [Library Copying], page 131).

it’s flexible
GPGME provides transparent support for several cryptographic protocols by
different engines. Currently, GPGME supports the OpenPGP protocol using
GnuPG as the backend, and the Cryptographic Message Syntax using GpgSM
as the backend.

it’s easy ~ GPGME hides the differences between the protocols and engines from the pro-
grammer behind an easy-to-use interface. This way the programmer can focus
on the other parts of the program, and still integrate strong cryptography in
his application. Once support for GPGME has been added to a program, it is
easy to add support for other crypto protocols once GPGME backends provide
them.

Chapter 1: Introduction 2

it’s language friendly
GPGME comes with language bindings for several common programming lan-
guages: Common Lisp, C++, and Python 3. The C++ bindings and the Python
bindings are available in separate repositories.

1.3 Overview

GPGME provides a data abstraction that is used to pass data to the crypto engine, and
receive returned data from it. Data can be read from memory or from files, but it can also
be provided by a callback function.

The actual cryptographic operations are always set within a context. A context provides
configuration parameters that define the behaviour of all operations performed within it.
Only one operation per context is allowed at any time, but when one operation is finished,
you can run the next operation in the same context. There can be more than one context,
and all can run different operations at the same time.

Furthermore, GPGME has rich key management facilities including listing keys, querying
their attributes, generating, importing, exporting and deleting keys, and acquiring infor-
mation about the trust path.

With some precautions, GPGME can be used in a multi-threaded environment, although
it is not completely thread safe and thus needs the support of the application.

Chapter 2: Preparation 3

2 Preparation

To use GPGME, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file
‘gpgme.h’. You must include this in all programs using the library, either directly or through
some other header file, like this:

#include <gpgme.h>

The name space of GPGME is gpgme_* for function names and data types and GPGME_x
for other symbols. Symbols internal to GPGME take the form _gpgme_* and _GPGME_x.

Because GPGME makes use of the GPG Error library, using GPGME will also use the
GPG_ERR_* name space directly, and the gpg_err*, gpg_str*, and gpgrt_* name space
indirectly.

2.2 Building the Source

If you want to compile a source file including the ‘gpgme.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘~I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, gpgme ships with gpgme.pc file, that knows about the path to the
include file and other configuration options. The command, pkg-config, can be used to
handle information with gpgme.pc file. In an environment which doesn’t have pkg-config
(like the one in early stage of OS bootstrap), for Automake, you can use gpgme.m4 which
invokes gpgrt-config with gpgme.pc. (In the past, gpgme used to ship with a small helper
program gpgme-config. This functionality of gpgme-config is replaced by pkg-config
with gpgme.pc file.)

The options that need to be added to the compiler invocation at compile time are output
by the ‘~-cflags’ option to pkg-config gpgme. The following example shows how it can
be used at the command line:

gcc —c foo.c ‘pkg-config --cflags gpgme®

Adding the output of ‘pkg-config —-cflags gpgme’ to the compiler command line will
ensure that the compiler can find the GPGME header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-
config gpgme can be used. For convenience, this option also outputs all other options that
are required to link the program with GPGME (in particular, the ‘~1gpgme’ option). The
example shows how to link ‘foo.o’” with the GPGME library to a program foo.

Chapter 2: Preparation 4

gcc -o foo foo.o ‘pkg-config --libs gpgme®

Of course you can also combine both examples to a single command by specifying both
options to pkg-config gpgme:

gcc -o foo foo.c ‘pkg-config --cflags --libs gpgme®

2.3 Largefile Support (LFS)

GPGME is compiled with largefile support by default, if it is available on the system. This
means that GPGME supports files larger than two gigabyte in size, if the underlying op-
erating system can. On some systems, largefile support is already the default. On such
systems, nothing special is required. However, some systems provide only support for files
up to two gigabyte in size by default. Support for larger file sizes has to be specifically
enabled.

To make a difficult situation even more complex, such systems provide two different types
of largefile support. You can either get all relevant functions replaced with alternatives that
are largefile capable, or you can get new functions and data types for largefile support
added. Those new functions have the same name as their smallfile counterparts, but with
a suffix of 64.

An example: The data type off_t is 32 bit wide on GNU /Linux PC systems. To address
offsets in large files, you can either enable largefile support add-on. Then a new data type
off64_t is provided, which is 64 bit wide. Or you can replace the existing off_t data type
with its 64 bit wide counterpart. All occurrences of off_t are then automagically replaced.

As if matters were not complex enough, there are also two different types of file descrip-
tors in such systems. This is important because if file descriptors are exchanged between
programs that use a different maximum file size, certain errors must be produced on some
file descriptors to prevent subtle overflow bugs from occurring.

As you can see, supporting two different maximum file sizes at the same time is not at
all an easy task. However, the maximum file size does matter for GPGME, because some
data types it uses in its interfaces are affected by that. For example, the off_t data type
is used in the gpgme_data_seek function, to match its POSIX counterpart. This affects the
call-frame of the function, and thus the ABI of the library. Furthermore, file descriptors
can be exchanged between GPGME and the application.

For you as the user of the library, this means that your program must be compiled in
the same file size mode as the library. Luckily, there is absolutely no valid reason for new
programs to not enable largefile support by default and just use that. The compatibility
modes (small file sizes or dual mode) can be considered an historic artefact, only useful to
allow for a transitional period.

On POSIX platforms GPGME is compiled using largefile support by default. This means
that your application must do the same, at least as far as it is relevant for using the ‘gpgme . h’
header file. All types in this header files refer to their largefile counterparts, if they are
different from any default types on the system.

On 32 and 64 bit Windows platforms off_t is declared as 32 bit signed integer. There
is no specific support for LFS in the C library. The recommendation from Microsoft is
to use the native interface (CreateFile et al.) for large files. Released binary versions of
GPGME (libgpgme-11.dll) have always been build with a 32 bit off_t. To avoid an ABI

Chapter 2: Preparation 5)

break we stick to this convention for 32 bit Windows by using long there. GPGME versions
for 64 bit Windows have never been released and thus we are able to use int64_t instead of
off _t there. For easier migration the typedef gpgme_off_t has been defined. The reason
we cannot use off_t directly is that some toolchains (e.g., mingw64) introduce a POSIX
compatible hack for off_t. Some widely used toolkits make use of this hack and in turn
GPGME would need to use it also. However, this would introduce an ABI break and existing
software making use of libgpgme might suffer from a severe break. Thus with version 1.4.2
we redefined all functions using off_t to use gpgme_off_t which is defined as explained
above. This way we keep the ABI well defined and independent of any toolchain hacks. The
bottom line is that LFS support in GPGME is only available on 64 bit versions of Windows.

On POSIX platforms you can enable largefile support, if it is different from the default on
the system the application is compiled on, by using the Autoconf macro AC_SYS_LARGEFILE.
If you do this, then you don’t need to worry about anything else: It will just work. In this
case you might also want to use AC_FUNC_FSEEKO to take advantage of some new interfaces,
and AC_TYPE_OFF_T (just in case).

If you do not use Autoconf, you can define the preprocessor symbol _FILE_OFFSET_
BITS to 64 before including any header files, for example by specifying the option -D_
FILE_OFFSET_BITS=64 on the compiler command line. You will also want to define the
preprocessor symbol LARGEFILE_SOURCE to 1 in this case, to take advantage of some new
interfaces.

If you do not want to do either of the above, you probably know enough about the issue
to invent your own solution. Just keep in mind that the GPGME header file expects that
largefile support is enabled, if it is available. In particular, we do not support dual mode
(_LARGEFILE64_SOURCE).

2.4 Using Automake

You can simply use PKG_CHECK_MODULES macro with pkg-config:
PKG_CHECK_MODULES ([GPGME], [gpgme >= 1.23.1])

Alternatively, instead of using pkg-config, for building on an environment with no pkg-
config, GPGME provides an extension to Automake that does all the work for you. Please
note that it is required to have gpgrt-config from libgpg-error installed in this case.

AM_PATH_GPGME ([minimum-version|, [action-if-found], [Macro]
[action-if-not-found])
Check whether GPGME (at least version minimum-version, if given) exists on the
host system. If it is found, execute action-if-found, otherwise do action-if-not-found,
if given.
This macro locates for gpgme . pc, with cross-compile support.
Additionally, the function defines GPGME_CFLAGS to the flags needed for compilation

of the program to find the ‘gpgme.h’ header file, and GPGME_LIBS to the linker flags
needed to link the program to the GPGME library.

AM_PATH_GPGME_PTHREAD was provided to check for the version of GPGME with the
native pthread implementation, and it defined GPGME_PTHREAD_CFLAGS and GPGME_
PTHREAD_LIBS. Since version 1.8.0 this is no longer necessary, as GPGME itself is

Chapter 2: Preparation 6

thread safe. Please use plain AM_PATH_GPGME instead, with GPGME_CFLAGS and GPGME _
LDFLAGS.

You can use the defined Autoconf variables like this in your ‘Makefile.am’:

AM_CPPFLAGS = $(GPGME_CFLAGS)
LDADD = $(GPGME_LIBS)

2.5 Using Libtool

The easiest way is to just use GNU Libtool. If you use libtool, and link to 1ibgpgme.1la,
everything will be done automatically by Libtool.

2.6 Library Version Check

const char * gpgme_check_version [Function]
(const char *required_version)

The function gpgme_check_version has four purposes. It can be used to retrieve the
version number of the library. In addition it can verify that the version number is
higher than a certain required version number. In either case, the function initializes
some sub-systems, and for this reason alone it must be invoked early in your program,
before you make use of the other functions in GPGME. The last purpose is to run
selftests.

As a side effect for W32 based systems, the socket layer will get initialized.

If required_version is NULL, the function returns a pointer to a statically allocated
string containing the version number of the library.

If required_version is not NULL, it should point to a string containing a version number,
and the function checks that the version of the library is at least as high as the version
number provided. In this case, the function returns a pointer to a statically allocated
string containing the version number of the library. If REQUIRED_VERSION is not
a valid version number, or if the version requirement is not met, the function returns
NULL.

If you use a version of a library that is backwards compatible with older releases,
but contains additional interfaces which your program uses, this function provides a
run-time check if the necessary features are provided by the installed version of the
library.

If a selftest fails, the function may still succeed. Selftest errors are returned later
when invoking gpgme_new or gpgme-data_new, so that a detailed error code can be
returned (historically, gpgme_check_version does not return a detailed error code).

int gpgme_set_global_flag (const char *name, const char *value) [Function]
SINCE: 1.4.0

On some systems it is not easy to set environment variables and thus hard to use
GPGME’s internal trace facility for debugging. This function has been introduced as
an alternative way to enable debugging and for a couple of other rarely used tweaks.
It is important to assure that only one thread accesses GPGME functions between a
call to this function and after the return from the call to gpgme_check_version.

Chapter 2: Preparation 7

All currently supported features require that this function is called as early as possible
— even before gpgme_check_version. The features are identified by the following
values for name:

debug To enable debugging use the string “debug” for name and value identical
to the value used with the environment variable GPGME_DEBUG.

disable-gpgconf
Using this feature with any value disables the detection of the gpgconf
program and thus forces GPGME to fallback into the simple OpenPGP
only mode. It may be used to force the use of GnuPG-1 on systems
which have both GPG versions installed. Note that in general the use
of gpgme_set_engine_info is a better way to select a specific engine
version.

gpgconf-name

gpg-name Set the name of the gpgconf respective gpg binary. The defaults are
GNU/GnuPG/gpgconf and GNU/GnuPG/gpg. Under Unix the leading direc-
tory part is ignored. Under Windows the leading directory part is used
as the default installation directory; the .exe suffix is added by GPGME.
Use forward slashed even under Windows.

require-gnupg
Set the minimum version of the required GnuPG engine. If that version is
not met, GPGME fails early instead of trying to use the existent version.
The given version must be a string with major, minor, and micro number.
Example: "2.1.0".

inst-type
The installation type is used to prefer a certain GnuPG installation. The
value is interpreted as an integer: A value of 0 is ignored, a value of 1
indicates an installation scheme as used by Gpg4win, a value of 2 indicates
an installation scheme as used by GnuPG Desktop on Windows. All other
values are reserved.

w32-inst-dir
On Windows GPGME needs to know its installation directory to find its
spawn helper. This is in general no problem because a DLL has this infor-
mation. Some applications however link statically to GPGME and thus
GPGME can only figure out the installation directory of this application
which may be wrong in certain cases. By supplying an installation direc-
tory as value to this flag, GPGME will assume that that directory is the
installation directory. This flag has no effect on non-Windows platforms.

This function returns 0 on success. In contrast to other functions the non-zero return
value on failure does not convey any error code. For setting “debug” the only possible
error cause is an out of memory condition; which would exhibit itself later anyway.
Thus the return value may be ignored.

After initializing GPGME, you should set the locale information to the locale required
for your output terminal. This locale information is needed for example for the curses and
Gtk pinentry. Here is an example of a complete initialization:

Chapter 2: Preparation 8

#include <locale.h>
#include <gpgme.h>

void
init_gpgme (void)
{

/* Initialize the locale environment. */

setlocale (LC_ALL, "");

gpgme_check_version (NULL);

gpgme_set_locale (NULL, LC_CTYPE, setlocale (LC_CTYPE, NULL));
#ifdef LC_MESSAGES

gpgme_set_locale (NULL, LC_MESSAGES, setlocale (LC_MESSAGES, NULL));
#endif
}

Note that you are highly recommended to initialize the locale settings like this.
GPGME can not do this for you because it would not be thread safe. The conditional on
LC_MESSAGES is only necessary for portability to W32 systems.

2.7 Signal Handling

The GPGME library communicates with child processes (the crypto engines). If a child
process dies unexpectedly, for example due to a bug, or system problem, a SIGPIPE signal
will be delivered to the application. The default action is to abort the program. To protect
against this, gpgme_check_version sets the SIGPIPE signal action to SIG_IGN, which means
that the signal will be ignored.

GPGME will only do that if the signal action for SIGPIPE is SIG_DEF at the time gpgme_
check_version is called. If it is something different, GPGME will take no action.

This means that if your application does not install any signal handler for SIGPIPE, you
don’t need to take any precautions. If you do install a signal handler for SIGPIPE, you must
be prepared to handle any SIGPIPE events that occur due to GPGME writing to a defunct
pipe. Furthermore, if your application is multi-threaded, and you install a signal action for
SIGPIPE, you must make sure you do this either before gpgme_check_version is called or
afterwards.

2.8 Multi-Threading

The GPGME library is mostly thread-safe, and can be used in a multi-threaded environment
but there are some requirements for multi-threaded use:

e The function gpgme_check_version must be called before any other function in the
library, because it initializes the thread support subsystem in GPGME. To achieve this
in multi-threaded programs, you must synchronize the memory with respect to other
threads that also want to use GPGME. For this, it is sufficient to call gpgme_check_
version before creating the other threads using GPGME!.

1 At least this is true for POSIX threads, as pthread_create is a function that synchronizes memory with
respects to other threads. There are many functions which have this property, a complete list can be
found in POSIX, IEEE Std 1003.1-2003, Base Definitions, Issue 6, in the definition of the term “Memory
Synchronization”. For other thread packages other, more relaxed or more strict rules may apply.

Chapter 2: Preparation 9

e Any gpgme_data_t and gpgme_ctx_t object must only be accessed by one thread at
a time. If multiple threads want to deal with the same object, the caller has to make
sure that operations on that object are fully synchronized.

e Only one thread at any time is allowed to call gpgme_wait. If multiple threads call
this function, the caller must make sure that all invocations are fully synchronized. It
is safe to start asynchronous operations while a thread is running in gpgme_wait.

e The function gpgme_strerror is not thread safe. You have to use gpgme_strerror_r
instead.

Chapter 3: Protocols and Engines 10

3 Protocols and Engines

GPGME supports several cryptographic protocols, however, it does not implement them.
Rather it uses backends (also called engines) which implement the protocol. GPGME uses
inter-process communication to pass data back and forth between the application and the
backend, but the details of the communication protocol and invocation of the backend
is completely hidden by the interface. All complexity is handled by GPGME. Where an
exchange of information between the application and the backend is necessary, GPGME
provides the necessary callback function hooks and further interfaces.

enum gpgme_protocol_t [Data type]
The gpgme_protocol_t type specifies the set of possible protocol values that are
supported by GPGME. The following protocols are supported:

GPGME_PROTOCOL _OpenPGP
GPGME_PROTOCOL_OPENPGP
This specifies the OpenPGP protocol.

GPGME_PROTOCOL_CMS
This specifies the Cryptographic Message Syntax.

GPGME_PROTOCOL _GPGCONF
Under development. Please ask on gnupg-devel@gnupg.org for help.

GPGME_PROTOCOL_ASSUAN
SINCE: 1.2.0

This specifies the raw Assuan protocol.

GPGME_PROTOCOL_G13
SINCE: 1.3.0

Under development. Please ask on gnupg-devel@gnupg.org for help.

GPGME_PROTOCOL_UISERVER
Under development. Please ask on gnupg-devel@gnupg.org for help.

GPGME_PROTOCOL_SPAWN
SINCE: 1.5.0

Special protocol for use with gpgme_op_spawn.

GPGME_PROTOCOL _UNKNOWN
Reserved for future extension. You may use this to indicate that the
used protocol is not known to the application. Currently, GPGME does
not accept this value in any operation, though, except for gpgme_get_
protocol_name.

const char * gpgme_get_protocol_name [Function]
(gpgme_protocol_t protocol)
The function gpgme_get_protocol_name returns a statically allocated string describ-
ing the protocol protocol, or NULL if the protocol number is not valid.

mailto:gnupg-devel@gnupg.org
mailto:gnupg-devel@gnupg.org
mailto:gnupg-devel@gnupg.org

Chapter 3: Protocols and Engines 11

3.1 Engine Version Check

const char * gpgme_get_dirinfo (cons char *what) [Function]
SINCE: 1.5.0

The function gpgme_get_dirinfo returns a statically allocated string with the value
associated to what. The returned values are the defaults and won’t change even
after gpgme_set_engine_info has been used to configure a different engine. NULL is
returned if no value is available. Commonly supported values for what are:

homedir Return the default home directory.

sysconfdir
Return the name of the system configuration directory

bindir Return the name of the directory with GnuPG program files.
libdir Return the name of the directory with GnuPG related library files.

libexecdir
Return the name of the directory with GnuPG helper program files.

datadir Return the name of the directory with GnuPG shared data.

localedir
Return the name of the directory with GnuPG locale data.

socketdir
Return the name of the directory with the following sockets.

agent-socket
Return the name of the socket to connect to the gpg-agent.

agent-ssh-socket
Return the name of the socket to connect to the ssh-agent component of

gpg-agent.

dirmngr-socket
Return the name of the socket to connect to the dirmngr.

uiserver-socket
Return the name of the socket to connect to the user interface server.

gpgconf-name
Return the file name of the engine configuration tool.

gpg—name Return the file name of the OpenPGP engine.

gpgsm-name
Return the file name of the CMS engine.

gl3-name Return the name of the file container encryption engine.

keyboxd-name
Return the name of the key database daemon.

agent-name
Return the name of gpg-agent.

Chapter 3: Protocols and Engines 12

scdaemon—name
Return the name of the smart card daemon.

dirmngr-name
Return the name of dirmngr.

pinentry-name
Return the name of the pinentry program.

gpg-wks-client-name
Return the name of the Web Key Service tool.

gpgtar—-name
Return the name of the gpgtar program.

gpgme_error_t gpgme_engine_check_version [Function]
(gpgme_protocol_t protocol)
The function gpgme_engine_check_version verifies that the engine implementing
the protocol PROTOCOL is installed in the expected path and meets the version
requirement of GPGME.

This function returns the error code GPG_ERR_NO_ERROR if the engine is available and
GPG_ERR_INV_ENGINE if it is not.

3.2 Engine Information

gpgme_engine_info_t [Data type]
The gpgme_engine_info_t type specifies a pointer to a structure describing a crypto
engine. The structure contains the following elements:

gpgme_engine_info_t next
This is a pointer to the next engine info structure in the linked list, or
NULL if this is the last element.

gpgme_protocol_t protocol
This is the protocol for which the crypto engine is used. You can convert
this to a string with gpgme_get_protocol_name for printing.

const char *file_name
This is a string holding the file name of the executable of the crypto
engine. Currently, it is never NULL, but using NULL is reserved for future
use, so always check before you use it.

const char *home_dir
This is a string holding the directory name of the crypto engine’s config-
uration directory. If it is NULL, then the default directory is used. See
gpgme_get_dirinfo on how to get the default directory.

const char *version
This is a string containing the version number of the crypto engine. It
might be NULL if the version number can not be determined, for example
because the executable doesn’t exist or is invalid.

Chapter 3: Protocols and Engines 13

const char *req_version
This is a string containing the minimum required version number of the
crypto engine for GPGME to work correctly. This is the version num-
ber that gpgme_engine_check_version verifies against. Currently, it is
never NULL, but using NULL is reserved for future use, so always check
before you use it.

gpgme_error_t gpgme_get_engine_info [Function]
(gpgme_engine_info_t *info)
The function gpgme_get_engine_info returns a linked list of engine info structures
in info. Each info structure describes the defaults of one configured backend.

The memory for the info structures is allocated the first time this function is invoked,
and must not be freed by the caller.

This function returns the error code GPG_ERR_NO_ERROR if successful, and a system
error if the memory could not be allocated.

Here is an example how you can provide more diagnostics if you receive an error message
which indicates that the crypto engine is invalid.

gpgme_ctx_t ctx;
gpgme_error_t err;

[...]

if (gpgme_err_code (err) == GPG_ERR_INV_ENGINE)
{
gpgme_engine_info_t info;
err = gpgme_get_engine_info (&info);
if (lerr)
{
while (info && info->protocol != gpgme_get_protocol (ctx))
info = info->next;
if (!info)
fprintf (stderr, "GPGME compiled without support for protocol %s",
gpgme_get_protocol_name (info->protocol));
else if (info->file_name && !info->version)
fprintf (stderr, "Engine %s not installed properly",
info->file_name) ;
else if (info->file_name && info->version && info->req_version)
fprintf (stderr, "Engine %s version %s installed, "
"but at least version %s required", info->file_name,
info->version, info->req_version);
else
fprintf (stderr, "Unknown problem with engine for protocol %s",
gpgme_get_protocol_name (info->protocol));

Chapter 3: Protocols and Engines 14

3.3 Engine Configuration

You can change the configuration of a backend engine, and thus change the executable
program and configuration directory to be used. You can make these changes the default
or set them for some contexts individually.

gpgme_error_t gpgme_set_engine_info (gpgme_protocol_t proto, [Function]
const char *file_name, const char *home_dir)
SINCE: 1.1.0

The function gpgme_set_engine_info changes the default configuration of the crypto
engine implementing the protocol proto.

file_name is the file name of the executable program implementing this protocol, and
home_dir is the directory name of the configuration directory for this crypto engine.
If home_dir is NULL, the engine’s default will be used.

The new defaults are not applied to already created GPGME contexts.

This function returns the error code GPG_ERR_NO_ERROR if successful, or an error code
on failure.

The functions gpgme_ctx_get_engine_info and gpgme_ctx_set_engine_info can be
used to change the engine configuration per context. See Section 7.4.2 [Crypto Engine],
page 34.

3.4 OpenPGP

OpenPGP is implemented by GnuPG, the GNU Privacy Guard. This is the first protocol
that was supported by GPGME.

The OpenPGP protocol is specified by GPGME_PROTOCOL_OpenPGP.

3.5 Cryptographic Message Syntax

CMS is implemented by GpgSM, the S/MIME implementation for GnuPG.
The CMS protocol is specified by GPGME_PROTOCOL _CMS.

3.6 Assuan

Assuan is the RPC library used by the various GnuPG components. The Assuan protocol
allows one to talk to arbitrary Assuan servers using GPGME. See Section 7.7.2 [Using the
Assuan protocol], page 100.

The ASSUAN protocol is specified by GPGME_PROTOCOL _ASSUAN.

Chapter 4: Algorithms 15

4 Algorithms

The crypto backends support a variety of algorithms used in public key cryptography.! The
following sections list the identifiers used to denote such an algorithm.

4.1 Public Key Algorithms

Public key algorithms are used for encryption, decryption, signing and verification of sig-
natures.

enum gpgme_pubkey_algo_t [Data type]
The gpgme_pubkey_algo_t type specifies the set of all public key algorithms that are
supported by GPGME. Possible values are:

GPGME_PK_RSA
This value indicates the RSA (Rivest, Shamir, Adleman) algorithm.

GPGME_PK_RSA_E
Deprecated. This value indicates the RSA (Rivest, Shamir, Adleman)
algorithm for encryption and decryption only.

GPGME_PK_RSA_S
Deprecated. This value indicates the RSA (Rivest, Shamir, Adleman)
algorithm for signing and verification only.

GPGME_PK_DSA
This value indicates DSA, the Digital Signature Algorithm.

GPGME_PK_ELG
This value indicates ElGamal.

GPGME_PK_ELG_E
This value also indicates ElGamal and is used specifically in GnuPG.

GPGME_PK_ECC
SINCE: 1.5.0
This value is a generic indicator for ellipic curve algorithms.
GPGME_PK_ECDSA
SINCE: 1.3.0
This value indicates ECDSA, the Elliptic Curve Digital Signature Algo-
rithm as defined by FIPS 186-2 and RFC-6637.
GPGME_PK_ECDH
SINCE: 1.3.0
This value indicates ECDH, the Eliptic Curve Diffie-Hellmann encryption
algorithm as defined by RFC-6637.
GPGME_PK_EDDSA
SINCE: 1.7.0
This value indicates the EADSA algorithm.

1 Some engines also provide symmetric only encryption; see the description of the encryption function on
how to use this.

Chapter 4: Algorithms 16

const char * gpgme_pubkey_algo_name [Function]
(gpgme_pubkey_algo_t algo)
The function gpgme_pubkey_algo_name returns a pointer to a statically allocated
string containing a description of the public key algorithm algo. This string can be
used to output the name of the public key algorithm to the user.

If algo is not a valid public key algorithm, NULL is returned.

char * gpgme_pubkey_algo_string (gpgme_subkey_t key) [Function]
SINCE: 1.7.0

The function gpgme_pubkey_algo_string is a convenience function to build and re-
turn an algorithm string in the same way GnuPG does (e.g., “rsa2048” or “ed25519”).
The caller must free the result using gpgme_free. On error (e.g., invalid argument
or memory exhausted), the function returns NULL and sets ERRNO.

4.2 Hash Algorithms

Hash (message digest) algorithms are used to compress a long message to make it suitable
for public key cryptography.

enum gpgme_hash_algo_t [Data type]
The gpgme_hash_algo_t type specifies the set of all hash algorithms that are sup-
ported by GPGME. Possible values are:

GPGME_MD_MD5
GPGME_MD_SHA1
GPGME_MD_RMD160
GPGME_MD_MD2
GPGME_MD_TIGER
GPGME_MD_HAVAL
GPGME_MD_SHA256
GPGME_MD_SHA384
GPGME_MD_SHA512
GPGME_MD_SHA224
SINCE: 1.5.0

GPGME_MD_MD4
GPGME_MD_CRC32
GPGME_MD_CRC32_RFC1510
GPGME_MD_CRC24_RFC2440

const char * gpgme_hash_algo_name (gpgme_hash_algo_t algo) [Function]
The function gpgme_hash_algo_name returns a pointer to a statically allocated string
containing a description of the hash algorithm algo. This string can be used to output
the name of the hash algorithm to the user.

If algo is not a valid hash algorithm, NULL is returned.

Chapter 5: Error Handling 17

5 Error Handling

Many functions in GPGME can return an error if they fail. For this reason, the application
should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly. For example, if you try to decrypt a tempered
message, the decryption will fail. Another error value actually means that the end of a data
buffer or list has been reached. The following descriptions explain for many error codes
what they mean usually. Some error values have specific meanings if returned by a certain
functions. Such cases are described in the documentation of those functions.

GPGME uses the 1ibgpg-error library. This allows to share the error codes with other
components of the GnuPG system, and thus pass error values transparently from the crypto
engine, or some helper application of the crypto engine, to the user. This way no information
is lost. As a consequence, GPGME does not use its own identifiers for error codes, but uses
those provided by libgpg-error. They usually start with GPG_ERR_.

However, GPGME does provide aliases for the functions defined in libgpg-error, which
might be preferred for name space consistency.

5.1 Error Values

gpgme_err_code_t [Data type]
The gpgme_err_code_t type is an alias for the libgpg-error type gpg_err_code_t.
The error code indicates the type of an error, or the reason why an operation failed.

A list of important error codes can be found in the next section.

gpgme_err_source_t [Data type]
The gpgme_err_source_t type is an alias for the libgpg-error type gpg_err_
source_t. The error source has not a precisely defined meaning. Sometimes it is
the place where the error happened, sometimes it is the place where an error was
encoded into an error value. Usually the error source will give an indication to where
to look for the problem. This is not always true, but it is attempted to achieve this
goal.

A list of important error sources can be found in the next section.

gpgme_error_t [Data type]
The gpgme_error_t type is an alias for the libgpg-error type gpg_error_t. An
error value like this has always two components, an error code and an error source.
Both together form the error value.
Thus, the error value can not be directly compared against an error code, but the
accessor functions described below must be used. However, it is guaranteed that only
0 is used to indicate success (GPG_ERR_NO_ERROR), and that in this case all other parts
of the error value are set to 0, too.
Note that in GPGME, the error source is used purely for diagnostical purposes. Only
the error code should be checked to test for a certain outcome of a function. The

Chapter 5: Error Handling 18

manual only documents the error code part of an error value. The error source is left
unspecified and might be anything.

static inline gpgme_err_code_t gpgme_err_code [Function]
(gpgme_error_t err)
The static inline function gpgme_err_code returns the gpgme_err_code_t component
of the error value err. This function must be used to extract the error code from an
error value in order to compare it with the GPG_ERR_* error code macros.

static inline gpgme_err_source_t gpgme_err_source [Function]
(gpgme_error_t err)
The static inline function gpgme_err_source returns the gpgme_err_source_t com-
ponent of the error value err. This function must be used to extract the error source
from an error value in order to compare it with the GPG_ERR_SOURCE_* error source
macros.

static inline gpgme_error_t gpgme_err_make [Function]
(gpgme_err_source_t source, gpgme_err_code_t code)
The static inline function gpgme_err_make returns the error value consisting of the
error source source and the error code code.

This function can be used in callback functions to construct an error value to return
it to the library.

static inline gpgme_error_t gpgme_error [Function]
(gpgme_err_code_t code)
The static inline function gpgme_error returns the error value consisting of the default
error source and the error code code.

For GPGME applications, the default error source is GPG_ERR_SOURCE_USER_1. You
can define GPGME_ERR_SOURCE_DEFAULT before including ‘gpgme.h’ to change this
default.

This function can be used in callback functions to construct an error value to return
it to the library.

The libgpg-error library provides error codes for all system error numbers it knows
about. If err is an unknown error number, the error code GPG_ERR_UNKNOWN_ERRNO is used.
The following functions can be used to construct error values from system errnor numbers.

gpgme_error_t gpgme_err_make_from_errno [Function]
(gpgme_err_source_t source, int err)
The function gpgme_err_make_from_errno is like gpgme_err_make, but it takes a
system error like errno instead of a gpgme_err_code_t error code.

gpgme_error_t gpgme_error_from_errno (int err) [Function]
The function gpgme_error_from_errno is like gpgme_error, but it takes a system
error like errno instead of a gpgme_err_code_t error code.

Sometimes you might want to map system error numbers to error codes directly, or map
an error code representing a system error back to the system error number. The following
functions can be used to do that.

Chapter 5: Error Handling 19

gpgme_err_code_t gpgme_err_code_from_errno (int err) [Function]
The function gpgme_err_code_from_errno returns the error code for the system error
err. If err is not a known system error, the function returns GPG_ERR_UNKNOWN_ERRNO.

int gpgme_err_code_to_errno (gpgme_err_code_t err) [Function]
The function gpgme_err_code_to_errno returns the system error for the error code
err. If err is not an error code representing a system error, or if this system error is
not defined on this system, the function returns 0.

5.2 Error Sources

The library libgpg-error defines an error source for every component of the GnuPG
system. The error source part of an error value is not well defined. As such it is mainly
useful to improve the diagnostic error message for the user.

If the error code part of an error value is 0, the whole error value will be 0. In this case
the error source part is of course GPG_ERR_SOURCE_UNKNOWN.

The list of error sources that might occur in applications using GPGME is:

GPG_ERR_SOURCE_UNKNOWN
The error source is not known. The value of this error source is 0.

GPG_ERR_SOURCE_GPGME
The error source is GPGME itself. This is the default for errors that occur in
the GPGME library.

GPG_ERR_SOURCE_GPG
The error source is GnuPG, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GPGSM
The error source is GPGSM, which is the crypto engine used for the CMS
protocol.

GPG_ERR_SOURCE_GCRYPT
The error source is libgcrypt, which is used by crypto engines to perform
cryptographic operations.

GPG_ERR_SOURCE_GPGAGENT
The error source is gpg-agent, which is used by crypto engines to perform
operations with the secret key.

GPG_ERR_SOURCE_PINENTRY
The error source is pinentry, which is used by gpg-agent to query the
passphrase to unlock a secret key.

GPG_ERR_SOURCE_SCD
The error source is the SmartCard Daemon, which is used by gpg-agent to
delegate operations with the secret key to a SmartCard.

GPG_ERR_SOURCE_KEYBOX
The error source is libkbx, a library used by the crypto engines to manage
local keyrings.

Chapter 5: Error Handling 20

GPG_ERR_SOURCE_USER_1

GPG_ERR_SOURCE_USER_2

GPG_ERR_SOURCE_USER_3

GPG_ERR_SOURCE_USER_4
These error sources are not used by any GnuPG component and can be used by
other software. For example, applications using GPGME can use them to mark
error values coming from callback handlers. Thus GPG_ERR_SOURCE_USER_1 is
the default for errors created with gpgme_error and gpgme_error_from_errno,
unless you define GPGME_ERR_SOURCE_DEFAULT before including ‘gpgme .h’.

5.3 Error Codes

The library 1ibgpg-error defines many error values. Most of them are not used by GPGME
directly, but might be returned by GPGME because it received them from the crypto engine.
The below list only includes such error codes that have a specific meaning in GPGME, or which
are so common that you should know about them.

GPG_ERR_EOF
This value indicates the end of a list, buffer or file.

GPG_ERR_NO_ERROR
This value indicates success. The value of this error code is 0. Also, it is
guaranteed that an error value made from the error code 0 will be 0 itself (as a
whole). This means that the error source information is lost for this error code,
however, as this error code indicates that no error occurred, this is generally
not a problem.

GPG_ERR_GENERAL
This value means that something went wrong, but either there is not enough
information about the problem to return a more useful error value, or there is
no separate error value for this type of problem.

GPG_ERR_ENOMEM
This value means that an out-of-memory condition occurred.

GPG_ERR_E. ..
System errors are mapped to GPG_ERR_FOO where FOO is the symbol for
the system error.

GPG_ERR_INV_VALUE
This value means that some user provided data was out of range. This can also
refer to objects. For example, if an empty gpgme_data_t object was expected,
but one containing data was provided, this error value is returned.

GPG_ERR_UNUSABLE_PUBKEY
This value means that some recipients for a message were invalid.

GPG_ERR_UNUSABLE_SECKEY
This value means that some signers were invalid.

GPG_ERR_NO_DATA
This value means that a gpgme_data_t object which was expected to have
content was found empty.

Chapter 5: Error Handling 21

GPG_ERR_CONFLICT
This value means that a conflict of some sort occurred.

GPG_ERR_NOT_IMPLEMENTED
This value indicates that the specific function (or operation) is not implemented.
This error should never happen. It can only occur if you use certain values or
configuration options which do not work, but for which we think that they
should work at some later time.

GPG_ERR_DECRYPT_FAILED
This value indicates that a decryption operation was unsuccessful.

GPG_ERR_BAD_PASSPHRASE
This value means that the user did not provide a correct passphrase when
requested.

GPG_ERR_CANCELED
This value means that the operation was canceled.

GPG_ERR_FULLY_CANCELED
This value means that the operation was canceled. It is sometimes returned
instead of GPG_ERR_CANCELED for internal reasons in GnuPG. You should treat
both values identically.

GPG_ERR_INV_ENGINE
This value means that the engine that implements the desired protocol is cur-
rently not available. This can either be because the sources were configured to
exclude support for this engine, or because the engine is not installed properly.

GPG_ERR_AMBIGUOUS_NAME
This value indicates that a user ID or other specifier did not specify a unique
key.

GPG_ERR_WRONG_KEY_USAGE
This value indicates that a key is not used appropriately.

GPG_ERR_CERT_REVOKED
This value indicates that a key signature was revoced.

GPG_ERR_CERT_EXPIRED
This value indicates that a key signature expired.

GPG_ERR_NO_CRL_KNOWN
This value indicates that no certificate revocation list is known for the certifi-
cate.

GPG_ERR_NO_POLICY_MATCH
This value indicates that a policy issue occurred.

GPG_ERR_NO_SECKEY
This value indicates that no secret key for the user ID is available.

GPG_ERR_MISSING_CERT
This value indicates that a key could not be imported because the issuer cer-
tificate is missing.

Chapter 5: Error Handling 22

GPG_ERR_BAD_CERT_CHAIN
This value indicates that a key could not be imported because its certificate
chain is not good, for example it could be too long.

GPG_ERR_UNSUPPORTED_ALGORITHM
This value means a verification failed because the cryptographic algorithm is
not supported by the crypto backend.

GPG_ERR_BAD_SIGNATURE
This value means a verification failed because the signature is bad.

GPG_ERR_NO_PUBKEY
This value means a verification failed because the public key is not available.

GPG_ERR_USER_1
GPG_ERR_USER_2

GPG_ERR_USER_16
These error codes are not used by any GnuPG component and can be freely
used by other software. Applications using GPGME might use them to mark
specific errors returned by callback handlers if no suitable error codes (including
the system errors) for these errors exist already.

5.4 Error Strings

const char * gpgme_strerror (gpgme_error_t err) [Function]
The function gpgme_strerror returns a pointer to a statically allocated string con-
taining a description of the error code contained in the error value err. This string
can be used to output a diagnostic message to the user.

This function is not thread safe. Use gpgme_strerror_r in multi-threaded programs.

int gpgme_strerror_r (gpgme_error-t err, char *buf, size_t buflen) [Function]
The function gpgme_strerror_r returns the error string for err in the user-supplied
buffer buf of size buflen. This function is, in contrast to gpgme_strerror, thread-
safe if a thread-safe strerror_r function is provided by the system. If the function
succeeds, 0 is returned and buf contains the string describing the error. If the buffer
was not large enough, ERANGE is returned and buf contains as much of the beginning
of the error string as fits into the buffer.

const char * gpgme_strsource (gpgme_error_-t err) [Function]
The function gpgme_strerror returns a pointer to a statically allocated string con-
taining a description of the error source contained in the error value err. This string
can be used to output a diagnostic message to the user.

The following example illustrates the use of gpgme_strerror:

gpgme_ctx_t ctx;
gpgme_error_t err = gpgme_new (&ctx);
if (err)

{

Chapter 5: Error Handling

fprintf (stderr, "¥%s: creating GpgME context failed: %s: %s\n",
argv[0], gpgme_strsource (err), gpgme_strerror (err));
exit (1);
}

23

Chapter 6: Exchanging Data 24

6 Exchanging Data

A lot of data has to be exchanged between the user and the crypto engine, like plaintext
messages, ciphertext, signatures and information about the keys. The technical details
about exchanging the data information are completely abstracted by GPGME. The user
provides and receives the data via gpgme_data_t objects, regardless of the communication
protocol between GPGME and the crypto engine in use.

gpgme_data_t [Data type]
The gpgme_data_t type is a handle for a container for generic data, which is used by
GPGME to exchange data with the user.

gpgme_data_t objects do not provide notifications on events. It is assumed that read and
write operations are blocking until data is available. If this is undesirable, the application
must ensure that all GPGME data operations always have data available, for example by
using memory buffers or files rather than pipes or sockets. This might be relevant, for
example, if the external event loop mechanism is used.

gpgme_off_t [Data type]
SINCE: 1.4.1

On POSIX platforms the gpgme_off_t type is an alias for off_t; it may be used
interchangeable. On Windows platforms gpgme_off_t is defined as a long (i.e., 32
bit) for 32 bit Windows and as a 64 bit signed integer for 64 bit Windows.

gpgme_ssize_t [Data type]
The gpgme_ssize_t type is an alias for ssize_t. It has only been introduced to
overcome portability problems pertaining to the declaration of ssize_t by different
toolchains.

6.1 Creating Data Buffers

Data objects can be based on memory, files, or callback functions provided by the user. Not
all operations are supported by all objects.

6.1.1 Memory Based Data Buffers

Memory based data objects store all data in allocated memory. This is convenient, but only
practical for an amount of data that is a fraction of the available physical memory. The
data has to be copied from its source and to its destination, which can often be avoided by
using one of the other data object

gpgme_error_t gpgme_data_new (gpgme_data_t *dh) [Function]
The function gpgme_data_new creates a new gpgme_data_t object and returns a
handle for it in dh. The data object is memory based and initially empty.

The function returns the error code GPG_ERR_NO_ERROR if the data object was success-
fully created, GPG_ERR_INV_VALUE if dh is not a valid pointer, and GPG_ERR_ENOMEM
if not enough memory is available.

Chapter 6: Exchanging Data 25

gpgme_error_t gpgme_data_new_from_mem (gpgme_data_t *dh, [Function]
const char *buffer, size_t size, int copy)
The function gpgme_data_new_from_mem creates a new gpgme_data_t object and fills
it with size bytes starting from buffer.

If copy is not zero, a private copy of the data is made. If copy is zero, the data is
taken from the specified buffer as needed, and the user has to ensure that the buffer
remains valid for the whole life span of the data object.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, GPG_ERR_INV_VALUE if dh or buffer is not a valid pointer, and
GPG_ERR_ENOMEM if not enough memory is available.

gpgme_error_t gpgme_data_new_from_file (gpgme_data_t *dh, [Function]
const char *filename, int copy)
The function gpgme_data_new_from_file creates a new gpgme_data_t object and
fills it with the content of the file filename.

If copy is not zero, the whole file is read in at initialization time and the file is not
used anymore after that. This is the only mode supported currently. Later, a value
of zero for copy might cause all reads to be delayed until the data is needed, but this
is not yet implemented.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, GPG_ERR_INV_VALUE if dh or filename is not a valid pointer, GPG_
ERR_NOT_IMPLEMENTED if code is zero, and GPG_ERR_ENOMEM if not enough memory is
available.

gpgme_error_t gpgme_data_new_from_filepart (gpgme_data-t *dh, [Function]
const char *filename, FILE *fp, off_t offset, size_t length)
The function gpgme_data_new_from_filepart creates a new gpgme_data_t object
and fills it with a part of the file specified by filename or fp.

Exactly one of filename and fp must be non-zero, the other must be zero. The
argument that is not zero specifies the file from which length bytes are read into the
data object, starting from offset.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, GPG_ERR_INV_VALUE if dh and exactly one of filename and fp is not
a valid pointer, and GPG_ERR_ENOMEM if not enough memory is available.

6.1.2 File Based Data Buffers

File based data objects operate directly on file descriptors or streams. Only a small amount
of data is stored in core at any time, so the size of the data objects is not limited by GPGME.

gpgme_error_t gpgme_data_new_from_fd (gpgme_-data_t *dh, int fd) [Function]
The function gpgme_data_new_from_fd creates a new gpgme_data_t object and uses
the file descriptor fd to read from (if used as an input data object) and write to (if
used as an output data object).

When using the data object as an input buffer, the function might read a bit more
from the file descriptor than is actually needed by the crypto engine in the desired
operation because of internal buffering.

Chapter 6: Exchanging Data 26

Note that GPGME assumes that the file descriptor is set to blocking mode. Errors
during I/O operations, except for EINTR, are usually fatal for crypto operations.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, and GPG_ERR_ENOMEM if not enough memory is available.

gpgme_error_t gpgme_data_new_from_stream (gpgme_data_-t *dh, [Function]
FILE *stream)
The function gpgme_data_new_from_stream creates a new gpgme_data_t object and
uses the 1/O stream stream to read from (if used as an input data object) and write
to (if used as an output data object).

When using the data object as an input buffer, the function might read a bit more
from the stream than is actually needed by the crypto engine in the desired operation
because of internal buffering.

Note that GPGME assumes that the stream is in blocking mode. Errors during I/0O
operations, except for EINTR, are usually fatal for crypto operations.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, and GPG_ERR_ENOMEM if not enough memory is available.

gpgme_error_t gpgme_data_new_from_estream (gpgme_data_t *dh, [Function]
gpgrt_stream_t stream)
The function gpgme_data_new_from_estream creates a new gpgme_data_t object
and uses the gpgrt stream stream to read from (if used as an input data object) and
write to (if used as an output data object).

When using the data object as an input buffer, the function might read a bit more
from the stream than is actually needed by the crypto engine in the desired operation
because of internal buffering.

Note that GPGME assumes that the stream is in blocking mode. Errors during I/0O
operations, except for EINTR, are usually fatal for crypto operations.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, and GPG_ERR_ENOMEM if not enough memory is available.

6.1.3 Callback Based Data Buffers

If neither memory nor file based data objects are a good fit for your application, you can
implement the functions a data object provides yourself and create a data object from these
callback functions.

ssize_t (*gpgme_data_read_cb_t) (void *handle, [Data type]
void *buffer, size_t size)
The gpgme_data_read_cb_t type is the type of functions which GPGME calls if it
wants to read data from a user-implemented data object. The function should read
up to size bytes from the current read position into the space starting at buffer. The
handle is provided by the user at data object creation time.

Note that GPGME assumes that the read blocks until data is available. Errors during
I/0 operations, except for EINTR, are usually fatal for crypto operations.

The function should return the number of bytes read, 0 on EOF, and -1 on error. If
an error occurs, errno should be set to describe the type of the error.

Chapter 6: Exchanging Data 27

ssize_t (*gpgme_data_write_cb_t) (void *handle, [Data type]
const void *buffer, size_t size)
The gpgme_data_write_cb_t type is the type of functions which GPGME calls if it
wants to write data to a user-implemented data object. The function should write
up to size bytes to the current write position from the space starting at buffer. The
handle is provided by the user at data object creation time.

Note that GPGME assumes that the write blocks until data is available. FErrors
during I/O operations, except for EINTR, are usually fatal for crypto operations.

The function should return the number of bytes written, and -1 on error. If an error
occurs, errno should be set to describe the type of the error.

off_t (*gpgme_data_seek_cb_t) (void *handle, [Data type]
off_t offset, int whence)
The gpgme_data_seek_cb_t type is the type of functions which GPGME calls if it
wants to change the current read/write position in a user-implemented data object,
just like the 1seek function.

The function should return the new read/write position, and -1 on error. If an error
occurs, errno should be set to describe the type of the error.

void (*gpgme_data_release_cb_t) (void *handle) [Data type]
The gpgme_data_release_cb_t type is the type of functions which GPGME calls if
it wants to destroy a user-implemented data object. The handle is provided by the
user at data object creation time.

struct gpgme_data_cbs [Data type]
This structure is used to store the data callback interface functions described above.
It has the following members:

gpgme_data_read_cb_t read
This is the function called by GPGME to read data from the data object.
It is only required for input data object.

gpgme_data_write_cb_t write
This is the function called by GPGME to write data to the data object.
It is only required for output data object.

gpgme_data_seek_cb_t seek
This is the function called by GPGME to change the current read/write
pointer in the data object (if available). It is optional.

gpgme_data_release_cb_t release
This is the function called by GPGME to release a data object. It is
optional.

gpgme_error_t gpgme_data_new_from_cbs (gpgme_data_t *dh, [Function]
gpgme_data_cbs_t cbs, void *handle)
The function gpgme_data_new_from_cbs creates a new gpgme_data_t object and
uses the user-provided callback functions to operate on the data object.

The handle handle is passed as first argument to the callback functions. This can be
used to identify this data object.

Chapter 6: Exchanging Data 28

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-
cessfully created, and GPG_ERR_ENOMEM if not enough memory is available.

6.2 Destroying Data Buffers

void gpgme_data_release (gpgme_data_t dh) [Function]
The function gpgme_data_release destroys the data object with the handle dh. Tt
releases all associated resources that were not provided by the user in the first place.

char * gpgme_data_release_and_get_mem (gpgme_data_t dh, [Function]
size_t *length)
The function gpgme_data_release_and_get_mem is like gpgme_data_release, ex-
cept that it returns the data buffer and its length that was provided by the object.

The user has to release the buffer with gpgme_free. In case the user provided the
data buffer in non-copy mode, a copy will be made for this purpose.

In case an error returns, or there is no suitable data buffer that can be returned to
the user, the function will return NULL. In any case, the data object dh is destroyed.

void gpgme_free (void *buffer) [Function]
SINCE: 1.1.1

The function gpgme_free releases the memory returned by gpgme_data_release_
and_get_mem and gpgme_pubkey_algo_string. It should be used instead of the
system libraries free function in case different allocators are used by a program.
This is often the case if gpgme is used under Windows as a DLL.

6.3 Manipulating Data Buffers

Data buffers contain data and meta-data. The following operations can be used to manip-
ulate both.

6.3.1 Data Buffer I/O Operations

ssize_t gpgme_data_read (gpgme-data_t dh, void *buffer, [Function]
size_t length)
The function gpgme_data_read reads up to length bytes from the data object with
the handle dh into the space starting at buffer.

If no error occurs, the actual amount read is returned. If the end of the data object
is reached, the function returns 0.

In all other cases, the function returns -1 and sets errno.

ssize_t gpgme_data_write (gpgme_data_t dh, const void *buffer, [Function]
size_t size)
The function gpgme_data_write writes up to size bytes starting from buffer into the
data object with the handle dh at the current write position.

The function returns the number of bytes actually written, or -1 if an error occurs.
If an error occurs, errno is set.

Chapter 6: Exchanging Data 29

off_t gpgme_data_seek (gpgme_data_t dh, off_t offset, int whence) [Function]
The function gpgme_data_seek changes the current read/write position.

The whence argument specifies how the offset should be interpreted. It must be one
of the following symbolic constants:

SEEK_SET Specifies that offset is a count of characters from the beginning of the
data object.

SEEK_CUR Specifies that offset is a count of characters from the current file position.
This count may be positive or negative.

SEEK_END Specifies that offset is a count of characters from the end of the data
object. A negative count specifies a position within the current extent of
the data object; a positive count specifies a position past the current end.
If you set the position past the current end, and actually write data, you
will extend the data object with zeros up to that position.

If successful, the function returns the resulting file position, measured in bytes from
the beginning of the data object. You can use this feature together with SEEK_CUR to
read the current read/write position.

If the function fails, -1 is returned and errno is set.
6.3.2 Data Buffer Meta-Data

char * gpgme_data_get_file_name (gpgme_data_t dh) [Function]
SINCE: 1.1.0

The function gpgme_data_get_file_name returns a pointer to a string containing
the file name associated with the data object. The file name will be stored in the
output when encrypting or signing the data and will be returned to the user when
decrypting or verifying the output data.

If no error occurs, the string containing the file name is returned. Otherwise, NULL
will be returned.

gpgme_error_t gpgme_data_set_file_name (gpgme_data_t dh, [Function]
const char *file_name)
SINCE: 1.1.0

The function gpgme_data_set_file_name sets the file name associated with the data
object. The file name will be stored in the output when encrypting or signing the
data and will be returned to the user when decrypting or verifying the output data.

If a signed or encrypted archive is created, then the file name will be interpreted as
the base directory for the relative paths of the files and directories to put into the
archive. This corresponds to the —directory option of gpgtar.

The function returns the error code GPG_ERR_INV_VALUE if dh is not a valid pointer
and GPG_ERR_ENOMEM if not enough memory is available.

enum gpgme_data_encoding_t [Data type]
The gpgme_data_encoding_t type specifies the encoding of a gpgme_data_t object.
For input data objects, the encoding is useful to give the backend a hint on the type
of data. For output data objects, the encoding can specify the output data format

Chapter 6: Exchanging Data 30

on certain operations. Please note that not all backends support all encodings on all
operations. The following data types are available:

GPGME_DATA_ENCODING_NONE
This specifies that the encoding is not known. This is the default for a
new data object. The backend will try its best to detect the encoding
automatically.

GPGME_DATA_ENCODING_BINARY
This specifies that the data is encoding in binary form; i.e., there is no
special encoding.

GPGME_DATA_ENCODING_BASE64
This specifies that the data is encoded using the Base-64 encoding scheme
as used by MIME and other protocols.

GPGME_DATA_ENCODING_ARMOR
This specifies that the data is encoded in an armored form as used by

OpenPGP and PEM.

GPGME_DATA_ENCODING_MIME
SINCE: 1.7.0

This specifies that the data is encoded as a MIME part.

GPGME_DATA_ENCODING_URL
SINCE: 1.2.0

The data is a list of linefeed delimited URLs. This is only useful with
gpgme_op_import.

GPGME_DATA_ENCODING_URLO
SINCE: 1.2.0
The data is a list of binary zero delimited URLs. This is only useful with
gpgme_op_import.

GPGME_DATA_ENCODING_URLESC
SINCE: 1.2.0

The data is a list of linefeed delimited URLs with all control and space
characters percent escaped. This mode is is not yet implemented.

gpgme_data_encoding_t gpgme_data_get_encoding [Function]
(gpgme_data_t dh)
The function gpgme_data_get_encoding returns the encoding of the data object with
the handle dh. If dh is not a valid pointer (e.g., NULL) GPGME_DATA_ENCODING_NONE
is returned.

gpgme_error_t gpgme_data_set_encoding [Function]
(gpgme_data_t dh, gpgme_data_encoding_t enc)
The function gpgme_data_set_encoding changes the encoding of the data object
with the handle dh to enc.

Chapter 6: Exchanging Data 31

gpgme_error_t gpgme_data_set_flag (gpgme_data_t dh, [Function]
const char *name, const char *value)
SINCE: 1.7.0

Some minor properties of the data object can be controlled with flags set by this
function. The properties are identified by the following values for name:

size-hint

The value is a decimal number with the length gpgme shall assume for
this data object. This is useful if the data is provided by callbacks or via
file descriptors but the applications knows the total size of the data. If
this is set the OpenPGP engine may use this to decide on buffer allocation
strategies and to provide a total value for its progress information.

io-buffer-size

sensitive

The value is a decimal number with the length of internal buffers to used
for internal I/O operations. The value is capped at 1048576 (1 MiB). In
certain environments large buffers can yield a performance boost for call-
back bases data object, but the details depend a lot on the circumstances
and the operating system. This flag may only be set once and must be
set before any actual I/O happens ion the data objects.

If the numeric value is not 0 the data object is considered to contain sen-
sitive information like passwords or key material. If this is set the internal
buffers are securely overwritten with zeroes by gpgme_data_release.

This function returns 0 on success.

6.3.3 Data Buffer Convenience Functions

enum gpgme_data_type_t [Data type]
SINCE: 1.4.3

The gpgme_data_type_t type is used to return the detected type of the content of a

data buffer.

GPGME_DATA_TYPE_INVALID
This is returned by gpgme_data_identify if it was not possible to identify the

data.

Reasons for this might be a non-seekable stream or a memory problem.

The value is 0.

GPGME_DATA_TYPE_UNKNOWN
The type of the data is not known.

GPGME_DATA_TYPE_PGP_SIGNED
The data is an OpenPGP signed message. This may be a binary signature, a
detached one or a cleartext signature.

GPGME_DATA_TYPE_PGP_ENCRYPTED
SINCE: 1.7.0

The data is an OpenPGP encrypted message.

Chapter 6: Exchanging Data 32

GPGME_DATA_TYPE_PGP_SIGNATURE
SINCE: 1.7.0

The data is an OpenPGP detached signature.

GPGME_DATA_TYPE_PGP_OTHER
This is a generic OpenPGP message. In most cases this will be encrypted data.

GPGME_DATA_TYPE_PGP_KEY
This is an OpenPGP key (private or public).

GPGME_DATA_TYPE_CMS_SIGNED
This is a CMS signed message.

GPGME_DATA_TYPE_CMS_ENCRYPTED
This is a CMS encrypted (enveloped data) message.

GPGME_DATA_TYPE_CMS_OTHER
This is used for other CMS message types.

GPGME_DATA_TYPE_X509_CERT
The data is a X.509 certificate

GPGME_DATA_TYPE_PKCS12
The data is a PKCS#12 message. This is commonly used to exchange private
keys for X.509.

gpgme_data_type_t gpgme_data_identify [Function]
(gpgme_data_t dh, int reserved)
SINCE: 1.4.3

The function gpgme_data_identify returns the type of the data with the handle dh.
If it is not possible to perform the identification, the function returns zero (GPGME_
DATA_TYPE_INVALID). Note that depending on how the data object has been created
the identification may not be possible or the data object may change its internal
state (file pointer moved). For file or memory based data object, the state should not
change. reserved should be zero.

Chapter 7: Contexts 33

7 Contexts

All cryptographic operations in GPGME are performed within a context, which contains the
internal state of the operation as well as configuration parameters. By using several contexts
you can run several cryptographic operations in parallel, with different configuration.

gpgme_ctx_t [Data type]
The gpgme_ctx_t type is a handle for a GPGME context, which is used to hold the
configuration, status and result of cryptographic operations.

7.1 Creating Contexts

gpgme_error_t gpgme_new (gpgme_ctx_t *ctx) [Function]
The function gpgme_new creates a new gpgme_ctx_t object and returns a handle for
it in ctx.

The function returns the error code GPG_ERR_NO_ERROR if the context was successfully
created, GPG_ERR_INV_VALUE if ctx is not a valid pointer, and GPG_ERR_ENOMEM if not
enough memory is available. Also, it returns GPG_ERR_NOT_OPERATIONAL if gpgme_
check_version was not called to initialize GPGME, and GPG_ERR_SELFTEST_FAILED
if a selftest failed. Currently, the only selftest is for Windows MingW32 targets to
see if -mms-bitfields was used (as required).

7.2 Destroying Contexts

void gpgme_release (gpgme_ctx_t ctx) [Function]
The function gpgme_release destroys the context with the handle ctx and releases
all associated resources.

7.3 Result Management

The detailed result of an operation is returned in operation-specific structures such as
gpgme_decrypt_result_t. The corresponding retrieval functions such as gpgme_op_
decrypt_result provide static access to the results after an operation completes. Those
structures shall be considered read-only and an application must not allocate such a
structure on its own. The following interfaces make it possible to detach a result structure
from its associated context and give it a lifetime beyond that of the current operation or
context.

void gpgme_result_ref (void *result) [Function]
SINCE: 1.2.0

The function gpgme_result_ref acquires an additional reference for the result result,
which may be of any type gpgme_*_result_t. As long as the user holds a reference,
the result structure is guaranteed to be valid and unmodified.

void gpgme_result_unref (void *result) [Function]
SINCE: 1.2.0
The function gpgme_result_unref releases a reference for the result result. If this was
the last reference, the result structure will be destroyed and all resources associated
to it will be released.

Chapter 7: Contexts 34

Note that a context may hold its own references to result structures, typically until the
context is destroyed or the next operation is started. In fact, these references are accessed
through the gpgme_op_*_result functions.

7.4 Context Attributes

7.4.1 Protocol Selection

gpgme_error_t gpgme_set_protocol (gpgme_ctx_t ctx, [Function]
gpgme_protocol_t proto)

The function gpgme_set_protocol sets the protocol used within the context ctx to
proto. All crypto operations will be performed by the crypto engine configured for
that protocol. See Chapter 3 [Protocols and Engines|, page 10.
Setting the protocol with gpgme_set_protocol does intentionally not check if the
crypto engine for that protocol is available and installed correctly. See Section 3.1
[Engine Version Check], page 11.
The function returns the error code GPG_ERR_NO_ERROR if the protocol could be set
successfully, and GPG_ERR_INV_VALUE if protocol is not a valid protocol.

gpgme_protocol_t gpgme_get_protocol (gpgme_ctx_t ctx) [Function]
The function gpgme_get_protocol retrieves the protocol currently use with the con-
text ctx.

7.4.2 Crypto Engine

The following functions can be used to set and retrieve the configuration of the crypto
engines of a specific context. The default can also be retrieved without any particular
context. See Section 3.2 [Engine Information|, page 12. The default can also be changed
globally. See Section 3.3 [Engine Configuration], page 14.

gpgme_engine_info_t gpgme_ctx_get_engine_info [Function]
(gpgme_ctx_t ctx)
SINCE: 1.1.0

The function gpgme_ctx_get_engine_info returns a linked list of engine info struc-
tures. Each info structure describes the configuration of one configured backend, as
used by the context ctx.

The result is valid until the next invocation of gpgme_ctx_set_engine_info for this
particular context.

This function can not fail.

gpgme_error_t gpgme_ctx_set_engine_info (gpgme_ctx_t ctx, [Function]
gpgme_protocol_t proto, const char *file_name, const char *home_dir)
SINCE: 1.1.0

The function gpgme_ctx_set_engine_info changes the configuration of the crypto
engine implementing the protocol proto for the context ctx.

file_name is the file name of the executable program implementing this protocol, and
home_dir is the directory name of the configuration directory for this crypto engine.
If home_dir is NULL, the engine’s default will be used.

Chapter 7: Contexts 35

Currently this function must be used before starting the first crypto operation. It
is unspecified if and when the changes will take effect if the function is called after
starting the first operation on the context ctx.

This function returns the error code GPG_ERR_NO_ERROR if successful, or an error code
on failure.

7.4.3 How to tell the engine the sender.

Some engines can make use of the sender’s address, for example to figure out the best user id
in certain trust models. For verification and signing of mails, it is thus suggested to let the
engine know the sender ("From:") address. GPGME provides two functions to accomplish
that. Note that the esoteric use of multiple "From:" addresses is not supported.

gpgme_error_t gpgme_set_sender (gpgme_ctx_t ctx, int address) [Function]
SINCE: 1.8.0

The function gpgme_set_sender specifies the sender address for use in sign and verify
operations. address is expected to be the “addr-spec” part of an address but may also
be a complete mailbox address, in which case this function extracts the “addr-spec”
from it. Using NULL for address clears the sender address.

The function returns 0 on success or an error code on failure. The most likely failure
is that no valid “addr-spec” was found in address.

const char * gpgme_get_sender (gpgme_ctx_t ctx) [Function]
SINCE: 1.8.0

The function gpgme_get_sender returns the current sender address from the context,
or NULL if none was set. The returned value is valid as long as the ctx is valid and
gpgme_set_sender has not been called again.

7.4.4 ASCII Armor

void gpgme_set_armor (gpgme_ctx_t ctx, int yes) [Function]
The function gpgme_set_armor specifies if the output should be ASCIT armored. By
default, output is not ASCII armored.

ASCII armored output is disabled if yes is zero, and enabled otherwise.

int gpgme_get_armor (gpgme_ctx_t ctx) [Function]
The function gpgme_get_armor returns 1 if the output is ASCII armored, and 0 if it
is not, or if ctx is not a valid pointer.

7.4.5 Text Mode

void gpgme_set_textmode (gpgme_ctx_t ctx, int yes) [Function]
The function gpgme_set_textmode specifies if canonical text mode should be used.
By default, text mode is not used.

Text mode is for example used for the RFC2015 signatures; note that the updated
RFC 3156 mandates that the mail user agent does some preparations so that text
mode is not needed anymore.

Chapter 7: Contexts 36

This option is only relevant to the OpenPGP crypto engine, and ignored by all other
engines.

Canonical text mode is disabled if yes is zero, and enabled otherwise.

int gpgme_get_textmode (gpgme_ctx_t ctx) [Function]
The function gpgme_get_textmode returns 1 if canonical text mode is enabled, and
0 if it is not, or if ctx is not a valid pointer.

7.4.6 Offline Mode

void gpgme_set_offline (gpgme_ctx_t ctx, int yes) [Function]
SINCE: 1.6.0
The function gpgme_set_offline specifies if offline mode should be used. Offline
mode is disabled if yes is zero, and enabled otherwise. By default, offline mode is
disabled.
The details of the offline mode depend on the used protocol and its backend engine.
It may eventually be extended to be more stricter and for example completely disable
the use of Dirmngr for any engine.
For the CMS protocol the offline mode specifies whether Dirmngr shall be used to
do additional validation that might require connecting external services (e.g., CRL
/ OCSP checks). The offline mode is used for all operations on this context. It has
only an effect with GnuPG versions 2.1.6 or later.
For the OpenPGP protocol offline mode entirely disables the use of the Dirmngr and
will thus guarantee that no network connections are done as part of an operation on
this context. It has only an effect with GnuPG versions 2.1.23 or later.

For all other protocols the offline mode is currently ignored.

int gpgme_get_offline (gpgme_ctx_t ctx) [Function]
SINCE: 1.6.0

The function gpgme_get_offline returns 1 if offline mode is enabled, and 0 if it is
not, or if ctx is not a valid pointer.

7.4.7 Pinentry Mode

gpgme_error_t gpgme_set_pinentry_mode (gpgme_ctx_t ctx, [Function]
gpgme_pinentry_mode_t mode)

SINCE: 1.4.0
The function gpgme_set_pinentry_mode specifies the pinentry mode to be used.
For GnuPG >= 2.1 this option is required to be set to GPGME_PINENTRY_MODE_

LOOPBACK to enable the passphrase callback mechanism in GPGME through gpgme_
set_passphrase_cb.

gpgme_pinentry_mode_t gpgme_get_pinentry_mode [Function]
(gpgme_ctx_t ctx)
SINCE: 1.4.0

The function gpgme_get_pinenty_mode returns the mode set for the context.

Chapter 7: Contexts 37

enum gpgme_pinentry_mode_t [Data type]
SINCE: 1.4.0

The gpgme_minentry_mode_t type specifies the set of possible pinentry modes that
are supported by GPGME if GnuPG >= 2.1 is used. The following modes are sup-
ported:

GPGME_PINENTRY_MODE_DEFAULT

SINCE: 1.4.0

Use the default of the agent, which is ask.
GPGME_PINENTRY_MODE_ASK

SINCE: 1.4.0

Force the use of the Pinentry.
GPGME_PINENTRY_MODE_CANCEL

SINCE: 1.4.0

Emulate use of Pinentry’s cancel button.
GPGME_PINENTRY_MODE_ERROR

SINCE: 1.4.0

Return a Pinentry error No Pinentry.
GPGME_PINENTRY_MODE_LOOPBACK

SINCE: 1.4.0

Redirect Pinentry queries to the caller. This enables the use of gpgme_
set_passphrase_cb because pinentry queries are redirected to gpgme.

Note: For 2.1.0 - 2.1.12 this mode requires allow-loopback-pinentry to
be enabled in the ‘gpg-agent.conf’ or an agent started with that option.

7.4.8 Included Certificates

void gpgme_set_include_certs (gpgme_ctx_t ctx, [Function]
int nr_of_certs)
The function gpgme_set_include_certs specifies how many certificates should be
included in an S/MIME signed message. By default, only the sender’s certificate is
included. The possible values of nr_of_certs are:

GPGME_INCLUDE_CERTS_DEFAULT

SINCE: 1.0.3
Fall back to the default of the crypto backend. This is the default for
GPGME.

-2 Include all certificates except the root certificate.

-1 Include all certificates.

0 Include no certificates.

1 Include the sender’s certificate only.

n Include the first n certificates of the certificates path, starting from the

sender’s certificate. The number n must be positive.

Chapter 7: Contexts 38

Values of nr_of_certs smaller than -2 are undefined.

This option is only relevant to the CMS crypto engine, and ignored by all other
engines.

int gpgme_get_include_certs (gpgme_ctx_t ctx) [Function]
The function gpgme_get_include_certs returns the number of certificates to include
into an S/MIME signed message.

7.4.9 Key Listing Mode

gpgme_error_t gpgme_set_keylist_mode (gpgme_ctx_t ctx, [Function]
gpgme_keylist_mode_t mode)
The function gpgme_set_keylist_mode changes the default behaviour of the key
listing functions. The value in mode is a bitwise-or combination of one or multiple of
the following bit values:

GPGME_KEYLIST_MODE_LOCAL
The GPGME_KEYLIST_MODE_LOCAL symbol specifies that the local keyring
should be searched for keys in the keylisting operation. This is the default.

Using only this option results in a —-list-keys.

GPGME_KEYLIST_MODE_EXTERN
The GPGME_KEYLIST_MODE_EXTERN symbol specifies that an external
source should be searched for keys in the keylisting operation. The type
of external source is dependent on the crypto engine used and whether
it is combined with GPGME_KEYLIST_MODE_LOCAL. For example, it can
be a remote keyserver or LDAP certificate server.

Using only this option results in a —-search-keys for GPGME_PROTOCOL _
OpenPGP and something similar to --list-external-keys for GPGME_
PROTOCOL_CMS.

GPGME_KEYLIST_MODE_LOCATE
This is a shortcut for the combination of GPGME_KEYLIST_MODE_LOCAL
and GPGME_KEYLIST_MODE_EXTERN, which results in a --locate-keys for
GPGME_PROTOCOL _OpenPGP.

GPGME_KEYLIST_MODE_SIGS
The GPGME_KEYLIST_MODE_SIGS symbol specifies that the key signatures
should be included in the listed keys.

GPGME_KEYLIST_MODE_SIG_NOTATIONS
SINCE: 1.1.1
The GPGME_KEYLIST_MODE_SIG_NOTATIONS symbol specifies that the sig-

nature notations on key signatures should be included in the listed keys.
This only works if GPGME_KEYLIST_MODE_SIGS is also enabled.

GPGME_KEYLIST_MODE_WITH_TOFU
SINCE: 1.7.0

The GPGME_KEYLIST_MODE_WITH_TOFU symbol specifies that information
pertaining to the TOFU trust model should be included in the listed keys.

Chapter 7: Contexts 39

GPGME_KEYLIST_MODE_WITH_KEYGRIP
SINCE: 1.14.0

The GPGME_KEYLIST_MODE_WITH_KEYRIP symbol specifies that the key-
grip is always included in the listing. The default depends on the version
of the backend and the used protocol.

GPGME_KEYLIST_MODE_WITH_SECRET
SINCE: 1.5.1

The GPGME_KEYLIST_MODE_WITH_SECRET returns information about the
presence of a corresponding secret key in a public key listing. A public
key listing with this mode is slower than a standard listing but can be
used instead of a second run to list the secret keys. This is only supported
for GnuPG versions >= 2.1. Note that using this option also makes sure
that the keygrip is available in the output.

GPGME_KEYLIST_MODE_EPHEMERAL
SINCE: 1.2.0

The GPGME_KEYLIST_MODE_EPHEMERAL symbol specifies that keys flagged
as ephemeral are included in the listing.

GPGME_KEYLIST_MODE_WITH_V5FPR
SINCE: 1.23.0

The GPGME_KEYLIST_MODE_WITH_V5FPR symbol specifies that key listings
shall also provide v5 style fingerprints for v4 OpenPGp keys.

GPGME_KEYLIST_MODE_VALIDATE
SINCE: 0.4.5

The GPGME_KEYLIST_MODE_VALIDATE symbol specifies that the backend
should do key or certificate validation and not just get the validity in-
formation from an internal cache. This might be an expensive operation
and is in general not useful. Currently only implemented for the S/MIME
backend and ignored for other backends.

GPGME_KEYLIST_MODE_FORCE_EXTERN
SINCE: 1.18.0

The GPGME_KEYLIST_MODE_FORCE_EXTERN symbol specifies that only ex-
ternal sources should be searched for keys in the keylisting operation.
If used in combination with GPGME_KEYLIST_MODE_LOCATE, the keylist-
ing results in a —~locate-external-keys for GPGME_PROTOCOL_OpenPGP.
The combination with GPGME_KEYLIST_MODE_LOCAL, but without GPGME_
KEYLIST_MODE_EXTERN is not allowed. Currently only implemented for
the OpenPGP backend and ignored for other backends.

GPGME_KEYLIST_MODE_LOCATE_EXTERNAL
SINCE: 1.18.0

This is a shortcut for the combination of GPGME_KEYLIST_MODE_LOCATE
and GPGME_KEYLIST_MODE_FORCE_EXTERN, which results in a --locate-
external-keys for GPGME_PROTOCOL_OpenPGP.

Chapter 7: Contexts 40

At least one of GPGME_KEYLIST_MODE_LOCAL and GPGME_KEYLIST_MODE_EXTERN must
be specified. For future binary compatibility, you should get the current mode with
gpgme_get_keylist_mode and modify it by setting or clearing the appropriate bits,
and then using that calculated value in the gpgme_set_keylisting_mode operation.
This will leave all other bits in the mode value intact (in particular those that are not
used in the current version of the library).

The function returns the error code GPG_ERR_NO_ERROR if the mode could be set
correctly, and GPG_ERR_INV_VALUE if ctx is not a valid pointer or mode is not a valid
mode.

gpgme_keylist_mode_t gpgme_get_keylist_mode [Function]
(gpgme_ctx_t ctx)

The function gpgme_get_keylist_mode returns the current key listing mode of the

context ctx. This value can then be modified and used in a subsequent gpgme_set_

keylist_mode operation to only affect the desired bits (and leave all others intact).

The function returns 0 if ctx is not a valid pointer, and the current mode otherwise.
Note that 0 is not a valid mode value.

7.4.10 Passphrase Callback

gpgme_error_t (*kgpgme_passphrase_cb_t) (void *hook, const [Data type]
char *uid_hint, const char *passphrase_info,
int prev_was_bad, int fd)
The gpgme_passphrase_cb_t type is the type of functions usable as passphrase call-
back function.

The argument uid_hint might contain a string that gives an indication for which user
ID the passphrase is required. If this is not available, or not applicable (in the case
of symmetric encryption, for example), uid_hint will be NULL.

The argument passphrase_info, if not NULL, will give further information about the
context in which the passphrase is required. This information is engine and operation
specific.

If this is the repeated attempt to get the passphrase, because previous attempts failed,
then prev_was_bad is 1, otherwise it will be 0.

The user must write the passphrase, followed by a newline character, to the file
descriptor fd. The function gpgme_io_writen should be used for the write operation.
Note that if the user returns 0 to indicate success, the user must at least write a
newline character before returning from the callback.

If an error occurs, return the corresponding gpgme_error_t value. You can use the
error code GPG_ERR_CANCELED to abort the operation. Otherwise, return 0.

Note: The passphrase_cb only works with GnuPG 1.x and 2.1.x and not with the
2.0.x series. See gpgme_set_pinentry_mode for more details on 2.1.x usage.

void gpgme_set_passphrase_cb (gpgme_ctx_t ctx, [Function]
gpgme_passphrase_cb_t passfunc, void *hook_value)

The function gpgme_set_passphrase_cb sets the function that is used when a

passphrase needs to be provided by the user to passfunc. The function passfunc

Chapter 7: Contexts 41

needs to implemented by the user, and whenever it is called, it is called with its first
argument being hook_value. By default, no passphrase callback function is set.

Not all crypto engines require this callback to retrieve the passphrase. It is better if
the engine retrieves the passphrase from a trusted agent (a daemon process), rather
than having each user to implement their own passphrase query. Some engines do
not even support an external passphrase callback at all, in this case the error code
GPG_ERR_NOT_SUPPORTED is returned.

For GnuPG >= 2.1 the pinentry mode has to be set to GPGME_PINENTRY_MODE_
LOOPBACK to enable the passphrase callback. See gpgme_set_pinentry_mode.

The user can disable the use of a passphrase callback function by calling gpgme_set_
passphrase_cb with passfunc being NULL.

void gpgme_get_passphrase_cb (gpgme_ctx_t ctx, [Function]
gpgme_passphrase_cb_t *passfunc, void **hook_value)
The function gpgme_get_passphrase_cb returns the function that is used when a
passphrase needs to be provided by the user in *passfunc, and the first argument for
this function in *hook_value. If no passphrase callback is set, or ctx is not a valid
pointer, NULL is returned in both variables.

passfunc or hook_value can be NULL. In this case, the corresponding value will not
be returned.

7.4.11 Progress Meter Callback

void (*gpgme_progress_cb_t) (void *hook, const char *what, [Data type]
int type, int current, int total)
The gpgme_progress_cb_t type is the type of functions usable as progress callback
function.

The arguments are specific to the crypto engine. More information about the progress
information returned from the GnuPG engine can be found in the GnuPG source code
in the file ‘doc/DETAILS’ in the section PROGRESS.

void gpgme_set_progress_cb (gpgme_ctx_t ctx, [Function]
gpgme_progress_cb_t progfunc, void *hook_value)
The function gpgme_set_progress_cb sets the function that is used when progress
information about a cryptographic operation is available. The function progfunc
needs to implemented by the user, and whenever it is called, it is called with its first
argument being hook_value. By default, no progress callback function is set.

Setting a callback function allows an interactive program to display progress infor-
mation about a long operation to the user.

The user can disable the use of a progress callback function by calling gpgme_set_
progress_cb with progfunc being NULL.

void gpgme_get_progress_cb (gpgme_ctx_t ctx, [Function]
gpgme_progress_cb_t *progfunc, void **hook_value)

The function gpgme_get_progress_cb returns the function that is used to inform the

user about the progress made in *progfunc, and the first argument for this function

Chapter 7: Contexts 42

in *hook_value. If no progress callback is set, or ctx is not a valid pointer, NULL is
returned in both variables.

progfunc or hook_value can be NULL. In this case, the corresponding value will not
be returned.

7.4.12 Status Message Callback

gpgme_error_t (*kgpgme_status_cb_t) (void *hook, const char [Data type]
xkeyword, const char *args)
The gpgme_status_cb_t type is the type of function usable as a status message
callback function.

The argument keyword is the name of the status message while the args argument
contains any arguments for the status message.

If an error occurs, return the corresponding gpgme_error_t value. Otherwise, return

0.
void gpgme_set_status_cb (gpgme_ctx_t ctx, [Function]
gpgme_status_cb_t statusfunc, void *hook_value)
SINCE: 1.6.0

The function gpgme_set_status_cb sets the function that is used when a status
message is received from gpg to statusfunc. The function statusfunc needs to be
implemented by the user, and whenever it is called, it is called with its first argument
being hook_value. By default, no status message callback function is set.

The user can disable the use of a status message callback function by calling gpgme _
set_status_cb with statusfunc being NULL.

void gpgme_get_status_cb (gpgme_ctx_t ctx, [Function]
gpgme_status_cb_t *statusfunc, void **hook_value)
SINCE: 1.6.0

The function gpgme_get_status_cb returns the function that is used to process sta-
tus messages from gpg in *statusfunc, and the first argument for this function in
*hook_value. If no status message callback is set, or ctx is not a valid pointer, NULL
is returned in both variables.

7.4.13 Context Flags

gpgme_error_t gpgme_set_ctx_flag (gpgme_ctx_t ctx, [Function]
const char *name, const char *value)
SINCE: 1.7.0

Some minor properties of the context can be controlled with flags set by this function.
The properties are identified by the following values for name:

"redraw" This flag is normally not changed by the caller because GPGME sets
and clears it automatically: The flag is cleared before an operation and
set if an operation noticed that the engine has launched a Pinentry. A
Curses based application may use this information to redraw the screen;
for example:

Chapter 7: Contexts 43

err = gpgme_op_keylist_start (ctx, "foo@example.org", 0);l]
while ('err)
{
err = gpgme_op_keylist_next (ctx, &key);
if (err)
break;
show_key (key) ;
gpgme_key_release (key);
}
if ((s = gpgme_get_ctx_flag (ctx, "redraw")) && *s)
redraw_screen ();
gpgme_release (ctx);

"full-status"
Using a value of "1" the status callback set by gpgme_set_status_cb re-
turns all status lines with the exception of PROGRESS lines. With the
default of "0" the status callback is only called in certain situations.

"raw-description"
Setting the value to "1" returns human readable strings in a raw format.
For example the non breaking space characters ("~") will not be removed
from the description field of the gpgme_tofu_info_t object.

"export-session-key"
Using a value of "1" specifies that the context should try to export the
symmetric session key when decrypting data. By default, or when using
an empty string or "0" for value, session keys are not exported.

"override-session-key"
The string given in value is passed to the GnuPG engine to override the
session key for decryption. The format of that session key is specific
to GnuPG and can be retrieved during a decrypt operation when the
context flag "export-session-key" is enabled. Please be aware that using
this feature with GnuPG < 2.1.16 or when decrypting an archive will leak
the session key on many platforms via ps(1).

"auto-key-retrieve"

Setting the value to "1" asks the backend to automatically retrieve a key
for signature verification if possible. Note that this option makes a "web
bug" like behavior possible. Keyserver or Web Key Directory operators
can see which keys you request, so by sending you a message signed by a
brand new key (which you naturally will not have on your local keyring),
the operator can tell both your IP address and the time when you verified
the signature.

"auto-key-import"
Setting the value to "1" forces the GPG backend to automatically import
a missing key for signature verification from the signature.

Chapter 7: Contexts 44

"include-key-block"
Setting the value to "1" forces the GPG backend to embed the signing
key as well as an encryption subkey into the the signature.

"request-origin"
The string given in value is passed to the GnuPG engines to request
restrictions based on the origin of the request. Valid values are docu-
mented in the GnuPG manual and the gpg man page under the option
‘-—request-origin’. Requires at least GnuPG 2.2.6 to have an effect.

"no-symkey-cache"
For OpenPGP disable the passphrase cache used for symmetrical en-
and decryption. This cache is based on the message specific salt value.
Requires at least GnuPG 2.2.7 to have an effect.

"ignore-mdc-error"
This flag passes the option ‘--ignore-mdc-error’ to gpg. This can be
used to force decryption of a message which failed due to a missing in-
tegrity check. This flag must be used with great caution and only if it
is a known non-corrupted old message and the decryption result of the
former try had the decryption result flag legacy_cipher_nomdc set. For
failsafe reasons this flag is reset after each operation.

"auto-key-locate"
The string given in value is passed to gpg. This can be used to change
the behavior of a GPGME_KEYLIST_MODE_LOCATE keylisting. Valid values
are documented in the GnuPG manual and the gpg man page under the
option ‘--auto-key-locate’. Requires at least GnuPG 2.1.18.

Note: Keys retrieved through auto-key-locate are automatically im-
ported in the keyring.

trust-model
SINCE: 1.11.2

Change the trust-model for all GnuPG engine operations. An empty
string sets the trust-model back to the users default. If the trust-model is
not supported by GnuPG the behavior is undefined and will likely cause
all operations to fail. Example: "tofu+pgp".

This options should be used carefully with a strict version requirement.
In some versions of GnuPG setting the trust-model changes the default
trust-model for future operations. A change in the trust-model also can
have unintended side effects, like rebuilding the trust-db.

"extended-edit"
This flag passes the option ‘--expert’ to gpg key edit. This can be used
to get additional callbacks in gpgme_op_edit.

"cert-expire"
SINCE: 1.15.2 The string given in value is passed to the GnuPG engine to
set the expiration time to use for key signature expiration. Valid values
are documented in the GnuPG manual and the gpg man page under the
option ‘--default-cert-expire’.

Chapter 7: Contexts 45

"key-origin"
SINCE: 1.16.1 The string given in value is passed to the GnuPG engine
to set the origin of imported keys. Valid values are documented in the
GnuPG manual and the gpg man page under the option ‘--key-origin’.

"import-filter"
SINCE: 1.16.1 The string given in value is passed to the GnuPG engine
to use as filter when importing keys. Valid values are documented
in the GnuPG manual and the gpg man page under the option
‘——import-filter’.

"import-options"
SINCE: 1.24.0 The string given in value is passed to the GnuPG en-
gine to use as options when importing keys. Valid values are docu-
mented in the GnuPG manual and the gpg man page under the option
‘-—import-options’.

"no-auto-check-trustdb"
SINCE: 1.19.0 Setting the value to "1" forces the GPG backend to disable
the automatic check of the trust database.

"proc-all-sigs"
SINCE: 1.24.0 Setting the value to "1" forces the GPG backend not to
stop signature checking of data after a bad signatures. This option is
ignored if the backend itself does not support the —proc-all-sigs option.

"known-notations"
SINCE: 1.24.0 The value is a space or comma delimited list of notation
names which will be used to create ‘~-known-notation’ options for gpg.

This function returns 0 on success.

const char * gpgme_get_ctx_flag (gpgme_ctx_t ctx, [Function]
const char *name)
SINCE: 1.8.0
The value of flags settable by gpgme_set_ctx_flag can be retrieved by this function.
If name is unknown the function returns NULL. For boolean flags an empty string is
returned for False and the string "1" is returned for True; either atoi(3) or a test for
an empty string can be used to get the boolean value.

7.4.14 Locale

A locale setting can be associated with a context. This locale is passed to the crypto engine,
and used for applications like the PIN entry, which is displayed to the user when entering
a passphrase is required.

The default locale is used to initialize the locale setting of all contexts created afterwards.

gpgme_error_t gpgme_set_locale (gpgme_ctx_t ctx, int category, [Function]
const char *value)
SINCE: 0.4.3

The function gpgme_set_locale sets the locale of the context ctx, or the default
locale if ctx is a null pointer.

Chapter 7: Contexts 46

The locale settings that should be changed are specified by category. Supported
categories are LC_CTYPE, LC_MESSAGES, and LC_ALL, which is a wildcard you can use
if you want to change all the categories at once.

The value to be used for the locale setting is value, which will be copied to GPGME’s
internal data structures. value can be a null pointer, which disables setting the locale,
and will make PIN entry and other applications use their default setting, which is
usually not what you want.

Note that the settings are only used if the application runs on a text terminal, and
that the settings should fit the configuration of the output terminal. Normally, it is
sufficient to initialize the default value at startup.

The function returns an error if not enough memory is available.

7.4.15 Additional Logs

Additional logs can be associated with a context. These logs are engine specific and can be
be obtained with gpgme_op_getauditlog.

gpgme_error_t gpgme_op_getauditlog (gpgme_ctx_t ctx, [Function]
gpgme_data_t output, unsigned int flags)
SINCE: 1.1.1

The function gpgme_op_getauditlog is used to obtain additional logs as specified by
flags into the output data. If

The function returns the error code GPG_ERR_NO_ERROR if a log could be queried from
the engine, and GPG_ERR_NOT_IMPLEMENTED if the log specified in flags is not available
for this engine. If no log is available GPG_ERR_NO_DATA is returned.

The value in flags is a bitwise-or combination of one or multiple of the following bit
values:

GPGME_AUDITLOG_DIAG
SINCE: 1.11.2

Obtain diagnostic output which would be written to stderr in interactive
use of the engine. This can be used to provide additional diagnostic
information in case of errors in other operations.

Note: If log-file has been set in the configuration the log will be empty
and GPG_ERR_NO_DATA will be returned.

Implemented for: GPGME_PROTOCOL_OpenPGP
GPGME_AUDITLOG_DEFAULT
SINCE: 1.11.2

This flag has the value 0 for compatibility reasons. Obtains additional
information from the engine by issuing the GETAUDITLOG command. For
GPGME_PROTOCOL_CMS this provides additional information about the
X509 certificate chain.

Implemented for: GPGME_PROTOCOL_CMS

GPGME_AUDITLOG_HTML
SINCE: 1.1.1

Chapter 7: Contexts 47

Same as GPGME_AUDITLOG_DEFAULT but in HTML.
Implemented for: GPGME_PROTOCOL_CMS

gpgme_error_t gpgme_op_getauditlog_start (gpgme_ctx_t ctx, [Function]
gpgme_data_t output, unsigned int flags)
SINCE: 1.1.1

This is the asynchronous variant of gpgme_op_getauditlog.

7.5 Key Management

Some of the cryptographic operations require that recipients or signers are specified. This
is always done by specifying the respective keys that should be used for the operation. The
following section describes how such keys can be selected and manipulated.

7.5.1 Key objects

The keys are represented in GPGME by structures which may only be read by the appli-
cation but never be allocated or changed. They are valid as long as the key object itself is
valid.

gpgme_key_t [Data type]
The gpgme_key_t type is a pointer to a key object. It has the following members:

gpgme_keylist_mode_t keylist_mode
SINCE: 0.9.0

The keylist mode that was active when the key was retrieved.

unsigned int revoked : 1
This is true if the key is revoked.

unsigned int expired : 1
This is true if the key is expired.

unsigned int disabled : 1
This is true if the key is disabled.

unsigned int invalid : 1
This is true if the key is invalid. This might have several reasons, for
a example for the S/MIME backend, it will be set during key listings if
the key could not be validated due to missing certificates or unmatched
policies.

unsigned int can_encrypt : 1
This is true if the key or one of its subkeys can be used for encryption
and the encryption will likely succeed.

unsigned int can_sign : 1
This is true if the key or one of its subkeys can be used to create data
signatures and the signing will likely succeed.

unsigned int can_certify : 1
This is true if the key or one of its subkeys can be used to create key
certificates.

Chapter 7: Contexts 48

unsigned int can_authenticate : 1
SINCE: 0.4.5

This is true if the key (ie one of its subkeys) can be used for authentication
and the authentication will likely succeed.

unsigned int has_encrypt : 1
SINCE: 1.23.0

This is true if the key or one of its subkeys is capable of encryption. Note
that this flag is set even if the key is expired.

unsigned int has_sign : 1
SINCE: 1.23.0

This is true if the key or one of its subkeys is capable of signing. Note
that this flag is set even if the key is expired.

unsigned int has_certify : 1
SINCE: 1.23.0

This is true if the key or one of its subkeys is capable of certification.
Note that this flag is set even if the key is expired.

unsigned int has_authenticate : 1
SINCE: 1.23.0

This is true if the key or one of its subkeys is capable of authentication.
Note that this flag is set even if the key is expired.

unsigned int is_qualified : 1
SINCE: 1.1.0

This is true if the key can be used for qualified signatures according to
local government regulations.

unsigned int secret : 1
This is true if the key is a secret key. Note, that this will always be true
even if the corresponding subkey flag may be false (offline/stub keys).
This is only set if a listing of secret keys has been requested or if GPGME_
KEYLIST_MODE_WITH_SECRET is active.

unsigned int origin : 5
SINCE: 1.8.0
Reserved for the origin of this key.

gpgme_protocol_t protocol
This is the protocol supported by this key.

char *issuer_serial
If protocol is GPGME_PROTOCOL_CMS, then this is the issuer serial.

char *issuer_name
If protocol is GPGME_PROTOCOL_CMS, then this is the issuer name.

char *chain_id
If protocol is GRGME_PROTOCOL_CMS, then this is the chain ID, which can
be used to built the certificate chain.

Chapter 7: Contexts 49

gpgme_validity_t owner_trust
If protocol is GPGME_PROTOCOL_OpenPGP, then this is the owner trust.

gpgme_subkey_t subkeys
This is a linked list with the subkeys of the key. The first subkey in the
list is the primary key and usually available.

gpgme_user_id_t uids
This is a linked list with the user IDs of the key. The first user ID in the
list is the main (or primary) user ID.

char *fpr SINCE: 1.7.0

This field gives the fingerprint of the primary key. Note that this is a copy
of the fingerprint of the first subkey. For an incomplete key (for example
from a verification result) a subkey may be missing but this field may be
set nevertheless.

unsigned long last_update
SINCE: 1.8.0

Reserved for the time of the last update of this key.

gpgme_revocation_key_t revkeys
SINCE: 1.24.0 This is a linked list with the revocation keys for the key.

gpgme_subkey_t [Data type]
SINCE: 1.5.0

The gpgme_subkey_t type is a pointer to a subkey structure. Subkeys are one com-
ponent of a gpgme_key_t object. In fact, subkeys are those parts that contains the
real information about the individual cryptographic keys that belong to the same key
object. One gpgme_key_t can contain several subkeys. The first subkey in the linked
list is also called the primary key.

The subkey structure has the following members:
gpgme_subkey_t next

This is a pointer to the next subkey structure in the linked list, or NULL
if this is the last element.

unsigned int revoked : 1
This is true if the subkey is revoked.

unsigned int expired : 1
This is true if the subkey is expired.

unsigned int disabled : 1
This is true if the subkey is disabled.

unsigned int invalid : 1
This is true if the subkey is invalid.

unsigned int can_encrypt : 1
This is true if the subkey can be used for encryption.

unsigned int can_sign : 1
This is true if the subkey can be used to create data signatures.

Chapter 7: Contexts 50

unsigned int can_certify : 1
This is true if the subkey can be used to create key certificates.

unsigned int can_authenticate : 1
SINCE: 0.4.5

This is true if the subkey can be used for authentication.

unsigned int is_qualified : 1
SINCE: 1.1.0
This is true if the subkey can be used for qualified signatures according
to local government regulations.

unsigned int is_cardkey : 1
This is true if the secret key or subkey is stored on a smart card.

unsigned int is_de_vs : 1
SINCE: 1.8.0
This is true if the subkey complies with the rules for classified information
in Germany at the restricted level (VS-NfD). This are currently RSA keys
of at least 3072 bits or ECDH/ECDSA keys using a Brainpool curve.

unsigned int can_renc : 1;
SINCE: 1.20.0

This is true if the key can be used for restricted encryption (ADSK).

unsigned int can_timestamp : 1;
SINCE: 1.20.0

This is true if the key can be used for timestamping.

unsigned int is_group_owned : 1;
SINCE: 1.20.0

This is true if the private key or subkey is possessed by more than one
person. Such a key is often called a “team key”.

unsigned int beta_compliance : 1;
SINCE: 1.24.0 The compliance flags (e.g. is_de_vs) are set but the software
has not yet been approved or is in a beta state.

unsigned int subkey_match : 1;
SINCE: 2.0.0 This flag is set iff the key has been looked up using a fin-
gerprint with a ’!” suffix.

unsigned int secret : 1
This is true if the subkey is a secret key. Note that it will be false if the
key is actually a stub key; i.e., a secret key operation is currently not
possible (offline-key). This is only set if a listing of secret keys has been
requested or if GPGME_KEYLIST_MODE_WITH_SECRET is active.

gpgme_pubkey_algo_t pubkey_algo
This is the public key algorithm supported by this subkey.

unsigned int length
This is the length of the subkey (in bits).

Chapter 7: Contexts 51

char xkeyid
This is the key ID of the subkey in hexadecimal digits.

char *fpr This is the fingerprint of the subkey in hexadecimal digits, if available.

char *vbfpr
For a v4 OpenPGP key this is its v5 style fingerprint of the subkey in
hexadecimal digits, if available.

char xkeygrip

SINCE: 1.7.0

The keygrip of the subkey in hex digit form or NULL if not available.
unsigned long int timestamp

This is the creation timestamp of the subkey. This is (unsigned long) (-

1) if the timestamp is invalid, and 0 if it is not available. Note that an
invalid timestamp indicates a bug in the engine.

unsigned long int expires
This is the expiration timestamp of the subkey, or 0 if the subkey does
not expire.

unsigned int is_cardkey : 1
SINCE: 1.2.0
True if the secret key is stored on a smart card.
char *card_number
SINCE: 1.2.0
The serial number of a smart card holding this key or NULL.

char *curve
For ECC algorithms the name of the curve.

gpgme_user_id_t [Data type]
A user ID is a component of a gpgme_key_t object. One key can have many user
IDs. The first one in the list is the main (or primary) user ID.

The user ID structure has the following members.

gpgme_user_id_t next
This is a pointer to the next user ID structure in the linked list, or NULL
if this is the last element.

unsigned int revoked : 1
This is true if the user ID is revoked.

unsigned int invalid : 1
This is true if the user ID is invalid.

gpgme_validity_t validity
This specifies the validity of the user ID.

char *uid This is the user ID string.

char *name
This is the name component of uid, if available.

Chapter 7: Contexts 52

char *comment
This is the comment component of uid, if available.

char *email
This is the email component of uid, if available.

char *address;
The mail address (addr-spec from RFC-5322) of the user ID string. This
is general the same as the email part of this structure but might be
slightly different. If no mail address is available NULL is stored.

gpgme_tofu_info_t tofu

SINCE: 1.7.0
If not NULL information from the TOFU database pertaining to this user
id.

gpgme_key_sig_t signatures
This is a linked list with the signatures on this user ID.

unsigned int origin : 5
SINCE: 1.8.0
Reserved for the origin of this user ID.
unsigned long last_update
SINCE: 1.8.0
Reserved for the time of the last update of this user ID.
char *uidhash;
A string used by gpg to identify a user ID. This string can be used at
certain prompts of gpgme_op_edit to select a user ID. Users must be

prepared to see a NULL value here. The format of the value is not specified
and may depend on the GPGME or GnuPG version.

gpgme_tofu_info_t [Data type]
SINCE: 1.7.0

The gpgme_tofu_info_t type is a pointer to a tofu info structure. Tofu info structures
are one component of a gpgme_user_id_t object, and provide information from the
TOFU database pertaining to the user 1D.

The tofu info structure has the following members:

gpgme_tofu_info_t next
This is a pointer to the next tofu info structure in the linked list, or NULL
if this is the last element.

unsigned int validity : 3
This is the TOFU wvalidity. It can have the following values:

0 The value 0 indicates a conflict.
1 The value 1 indicates a key without history.
2 The value 2 indicates a key with too little history.

Chapter 7: Contexts 53

3 The value 3 indicates a key with enough history for basic
trust.
4 The value 4 indicates a key with a lot of history.

unsigned int policy : 4
This is the TOFU policy, see gpgme_tofu_policy_t.

unsigned short signcount
This is the number of signatures seen for this binding (or USHRT_MAX if
there are more than that).

unsigned short encrcount
This is the number of encryptions done with this binding (or USHRT_MAX
if there are more than that).

unsigned long signfirst
Number of seconds since Epoch when the first signature was seen with
this binding.

unsigned long signlast
Number of seconds since Epoch when the last signature was seen with
this binding.

unsigned long encrfirst
Number of seconds since Epoch when the first encryption was done with
this binding.

unsigned long encrlast
Number of seconds since Epoch when the last encryption was done with
this binding.

char *description
A human-readable string summarizing the TOFU data (or NULL).

gpgme_key_sig_t [Data type]
The gpgme_key_sig_t type is a pointer to a key signature structure. Key signatures
are one component of a gpgme_key_t object, and validate user IDs on the key in the
OpenPGP protocol.

The signatures on a key are only available if the key was retrieved via a listing opera-
tion with the GPGME_KEYLIST_MODE_SIGS mode enabled, because it can be expensive
to retrieve all signatures of a key.

The signature notations on a key signature are only available if the key was retrieved
via a listing operation with the GPGME_KEYLIST_MODE_SIG_NOTATIONS mode enabled,
because it can be expensive to retrieve all signature notations.

The key signature structure has the following members:
gpgme_key_sig_t next

This is a pointer to the next key signature structure in the linked list, or
NULL if this is the last element.

unsigned int revoked : 1
This is true if the key signature is a revocation signature.

Chapter 7: Contexts 54

unsigned int expired : 1
This is true if the key signature is expired.

unsigned int invalid : 1
This is true if the key signature is invalid.

unsigned int exportable : 1
This is true if the key signature is exportable.

unsigned int trust_depth : 8
This is the depth of a trust signature, or 0 if the key signature is not a
trust signature.

unsigned int trust_value : 8
This is the trust amount of a trust signature.

gpgme_pubkey_algo_t pubkey_algo
This is the public key algorithm used to create the signature.

char *keyid
This is the key ID of the key (in hexadecimal digits) used to create the
signature.

unsigned long int timestamp
This is the creation timestamp of the key signature. This is (unsigned
long) (-1) if the timestamp is invalid, and 0 if it is not available.

unsigned long int expires
This is the expiration timestamp of the key signature, or 0 if the key
signature does not expire.

char *trust_scope
This is a regular expression that limits the scope of a trust signature.
Users must be prepared to see a NULL value here.

gpgme_error_t status
This is the status of the signature and has the same meaning as the
member of the same name in a gpgme_signature_t object.

unsigned int sig_class
This specifies the signature class of the key signature. The meaning is
specific to the crypto engine.

char *uid This is the main user ID of the key used to create the signature.

char *name
This is the name component of uid, if available.

char *comment
This is the comment component of uid, if available.

char *email
This is the email component of uid, if available.

gpgme_sig_notation_t notations
This is a linked list with the notation data and policy URLs.

Chapter 7: Contexts 55

gpgme_revocation_key_t [Data type]
SINCE: 1.24.0

The gpgme_revocation_key_t type is a pointer to a revocation key structure. Re-
vocation key structures are one component of a gpgme_key_t object. They provide
information about the designated revocation keys for a key.

The revocation key structure has the following members:

gpgme_revocation_key_t next
This is a pointer to the next revocation key structure in the linked list,
or NULL if this is the last element.

gpgme_pubkey_algo_t pubkey_algo
This is the public key algorithm of the revocation key.

char *fpr This is the fingerprint of the revocation_key in hexadecimal digits.

unsigned int key_class
This is the class of the revocation key signature subpacket.

unsigned int sensitive : 1
This is true if the revocation key is marked as sensitive.

7.5.2 Listing Keys

gpgme_error_t gpgme_op_keylist_start (gpgme_ctx_t ctx, [Function]
const char *pattern, int secret_only)
The function gpgme_op_keylist_start initiates a key listing operation inside the
context ctx. It sets everything up so that subsequent invocations of gpgme_op_
keylist_next return the keys in the list.

If pattern is NULL, all available keys are returned. Otherwise, pattern contains an
engine specific expression that is used to limit the list to all keys matching the pattern.
Note that the total length of the pattern is restricted to an engine-specific maximum
(a couple of hundred characters are usually accepted). The pattern should be used to
restrict the search to a certain common name or user, not to list many specific keys
at once by listing their fingerprints or key IDs.

If secret_only is not 0, the list is restricted to secret keys only.

The context will be busy until either all keys are received (and gpgme_op_keylist_
next returns GPG_ERR_EOF), or gpgme_op_keylist_end is called to finish the opera-
tion.

The function returns the error code GPG_ERR_INV_VALUE if ctx is not a valid pointer,
and passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_keylist_ext_start (gpgme_ctx_t ctx, [Function]
const char *pattern]|, int secret_only, int reserved)
The function gpgme_op_keylist_ext_start initiates an extended key listing opera-
tion inside the context ctx. It sets everything up so that subsequent invocations of
gpgme_op_keylist_next return the keys in the list.

If pattern or *pattern is NULL, all available keys are returned. Otherwise, pattern is
a NULL terminated array of strings that are used to limit the list to all keys matching

Chapter 7: Contexts 56

at least one of the patterns verbatim. Note that the total length of all patterns is
restricted to an engine-specific maximum (the exact limit also depends on the number
of patterns and amount of quoting required, but a couple of hundred characters are
usually accepted). Patterns should be used to restrict the search to a certain common

name or user, not to list many specific keys at once by listing their fingerprints or key
1Ds.

If secret_only is not 0, the list is restricted to secret keys only.
The value of reserved must be 0.

The context will be busy until either all keys are received (and gpgme_op_keylist_
next returns GPG_ERR_EOF), or gpgme_op_keylist_end is called to finish the opera-
tion.

The function returns the error code GPG_ERR_INV_VALUE if ctx is not a valid pointer,
and passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_keylist_from_data_start [Function]
(gpgme_ctx_t ctx, gpgme_data_t data, int reserved)
SINCE: 1.8.0

The function gpgme_op_keylist_from_data_start initiates a key listing operation
inside the context ctx. In contrast to the other key listing operation the keys are
read from the supplied data and not from the local key database. The keys are also
not imported into the local key database. The function sets everything up so that
subsequent invocations of gpgme_op_keylist_next return the keys from data.

The value of reserved must be 0.

This function requires at least GnuPG version 2.1.14 and currently works only with
OpenPGP keys.

The context will be busy until either all keys are received (and gpgme_op_keylist_
next returns GPG_ERR_EOF), or gpgme_op_keylist_end is called to finish the opera-
tion. While the context is busy data may not be released.

The function returns the error code GPG_ERR_INV_VALUE if ctx is not a valid pointer,
and passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_keylist_next (gpgme_ctx_t ctx, [Function]
gpgme_key_t *r_key)
The function gpgme_op_keylist_next returns the next key in the list created by a
previous gpgme_op_keylist_start operation in the context ctx. The key will have
one reference for the user. See Section 7.5.4 [Manipulating Keys], page 59.

This is the only way to get at gpgme_key_t objects in GPGME.

If the last key in the list has already been returned, gpgme_op_keylist_next returns
GPG_ERR_EOQF.

The function returns the error code GPG_ERR_INV_VALUE if ctx or r_key is not a valid
pointer, and GPG_ERR_ENOMEM if there is not enough memory for the operation.

gpgme_error_t gpgme_op_keylist_end (gpgme_ctx_t ctx) [Function]
The function gpgme_op_keylist_end ends a pending key list operation in the context
ctx.

Chapter 7: Contexts 57

After the operation completed successfully, the result of the key listing operation can
be retrieved with gpgme_op_keylist_result.

The function returns the error code GPG_ERR_INV_VALUE if ctx is not a valid pointer,
and GPG_ERR_ENOMEM if at some time during the operation there was not enough
memory available.

The following example illustrates how all keys containing a certain string (g10code) can
be listed with their key ID and the name and email address of the main user ID:

gpgme_ctx_t ctx;

gpgme_key_t key;
gpgme_error_t err = gpgme_new (&ctx);

if (lerr)
{
err = gpgme_op_keylist_start (ctx, "glOcode", 0);
while (l!err)

{
err = gpgme_op_keylist_next (ctx, &key);
if (err)
break;
printf ("%s:", key->subkeys->keyid);
if (key->uids && key->uids->name)
printf (" %s", key->uids->name);
if (key->uids && key->uids->email)
printf (" <%s>", key->uids->email);
putchar (’\n’);
gpgme_key_release (key);
}
gpgme_release (ctx);
}
if (gpg_err_code (err) != GPG_ERR_EQOF)
{
fprintf (stderr, "can not list keys: %s\n", gpgme_strerror (err));
exit (1);
}
gpgme_keylist_result_t [Data type]

This is a pointer to a structure used to store the result of a gpgme_op_keylist_x
operation. After successfully ending a key listing operation, you can retrieve the
pointer to the result with gpgme_op_keylist_result. The structure contains the
following member:

unsigned int truncated : 1
This is true if the crypto backend had to truncate the result, and less
than the desired keys could be listed.

Chapter 7: Contexts 58

gpgme_keylist_result_t gpgme_op_keylist_result [Function]
(gpgme_ctx_t ctx)
The function gpgme_op_keylist_result returns a gpgme_keylist_result_t
pointer to a structure holding the result of a gpgme_op_keylist_x operation. The
pointer is only valid if the last operation on the context was a key listing operation,
and if this operation finished successfully. The returned pointer is only valid until
the next operation is started on the context.

In a simple program, for which a blocking operation is acceptable, the following function
can be used to retrieve a single key.

gpgme_error_t gpgme_get_key (gpgme_ctx_t ctx, const char *fpr, [Function]
gpgme_key_t *r_key, int secret)
The function gpgme_get_key gets the key with the fingerprint (or key ID) fpr from
the crypto backend and return it in r_key. If secret is true, get the secret key. The
currently active keylist mode is used to retrieve the key. The key will have one
reference for the user.

If the key is not found in the keyring, gpgme_get_key returns the error code GPG_
ERR_EOF and *r_key will be set to NULL.

The function returns the error code GPG_ERR_INV_VALUE if ctx or r_key is not a valid
pointer or fpr is not a fingerprint or key ID, GPG_ERR_AMBIGUOUS_NAME if the key ID
was not a unique specifier for a key, and GPG_ERR_ENOMEM if at some time during the
operation there was not enough memory available.

7.5.3 Information About Keys

Please see the beginning of this section for more information about gpgme_key_t objects.

gpgme_validity_t [Data type]
The gpgme_validity_t type is used to specify the validity of a user ID in a key. The
following validities are defined:

GPGME_VALIDITY_UNKNOWN
The user ID is of unknown validity. The string representation of this
validity is “?7.

GPGME_VALIDITY_UNDEFINED
The validity of the user ID is undefined. The string representation of this

[1)

validity is “q”.

GPGME_VALIDITY_NEVER
The user ID is never valid. The string representation of this validity is

1)
n-.

GPGME_VALIDITY_MARGINAL
The user ID is marginally valid. The string representation of this validity
is “m” .

GPGME_VALIDITY_FULL

The user ID is fully valid. The string representation of this validity is
Ltf”.

Chapter 7: Contexts 59

GPGME_VALIDITY_ULTIMATE
The user ID is ultimately valid. The string representation of this validity

is “u”.

7.5.4 Manipulating Keys

void gpgme_key_ref (gpgme_key_t key) [Function]
The function gpgme_key_ref acquires an additional reference for the key key.

void gpgme_key_unref (gpgme_key_t key) [Function]
The function gpgme_key_unref releases a reference for the key key. If this was the
last reference, the key will be destroyed and all resources associated to it will be
released.

gpgme_error_t gpgme_op_setexpire (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, unsigned long expires, const char *subfprs,
unsigned int reserved);
SINCE: 1.14.1

The function gpgme_op_setexpire sets the expiration time of the key key or of the
specified subkeys. This function requires at least version 2.1.22 of GnuPG.

key specifies the key to operate on.

expires specifies the expiration time in seconds from now. To be similar to other
usages where expiration times are provided in unsigned long this is similar to the key
creation date and so it is in seconds from NOW.

The common case is to use 0 to not set an expiration time. Note that this parameter
takes an unsigned long value and not a time_t to avoid problems on systems which
use a signed 32 bit time_t. Note further that the OpenPGP protocol uses 32 bit
values for timestamps and thus can only encode dates up to the year 2106.

subfprs selects the subkey(s) for which the expiration time should be set. If subfprs
is set to NULL, then the expiration time of the primary key is set. If subfprs is an
asterisk (*), then the expiration times of all non-revoked and not yet expired subkeys
are set. To select more than one subkey put all subkey fingerprints into one string
separated by linefeeds characters (\n).

reserved is reserved for later use and must be 0.

gpgme_error_t gpgme_op_setexpire_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, unsigned long expires, const char *subfprs,
unsigned int flags);
SINCE: 1.14.1

The function gpgme_op_setexpire_start initiates a gpgme_op_setexpire opera-
tion; see there for details. It must be completed by calling gpgme_wait on the context.
See Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_setownertrust (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *value);
SINCE: 1.24.0

Chapter 7: Contexts 60

The function gpgme_op_setownertrust sets the owner trust of the key key or it sets
the disable flag of the key key. This function only works for OpenPGP and requires
at least version 2.4.6 of GnuPG.

key specifies the key to operate on.

value specifies the owner trust value to set. Valid values are "undefined", "never",
"marginal", "full", "ultimate". If value is the string "disable" then the key key is
disabled. If value is the string "enable" then the key key is re-enabled.

The function returns the error code GPG_ERR_NO_ERROR if the operation was completed
successfully, GPG_ERR_NOT_SUPPORTED if the engine does not support the command,
and GPG_ERR_INV_VALUE if key is not a valid pointer or not a valid key or if value is
not a valid pointer or the empty string.

gpgme_error_t gpgme_op_setownertrust_start (gpgme_ctx_-t ctx, [Function]
gpgme_key_t key, const char *value);
SINCE: 1.24.0

The function gpgme_op_setownertrust_start initiates a gpgme_op_setownertrust
operation; see there for details. It must be completed by calling gpgme_wait on the
context. See Section 7.8.1 [Waiting For Completion], page 103.

The function returns the same error codes as gpgme_op_setownertrust.

7.5.5 Generating Keys

GPGME provides a set of functions to create public key pairs. Most of these functions
require the use of GnuPG 2.1 and later; for older GnuPG versions the gpgme_op_genkey
function can be used. Existing code which wants to update to the new functions or new
code which shall supports older GnuPG versions may try the new functions first and provide
a fallback to the old function if the error code GPG_ERR_NOT_SUPPORTED is received.

gpgme_error_t gpgme_op_createkey (gpgme_ctx_t ctx, [Function]
const char *userid, const char *algo, unsigned long reserved,
unsigned long expires, gpgme_key_t extrakey, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_createkey generates a new key for the procotol active in the
context ctx. As of now this function does only work for OpenPGP and requires at
least version 2.1.13 of GnuPG.

userid is commonly the mail address associated with the key. GPGME does not
require a specific syntax but if more than a mail address is given, RFC-822 style
format is suggested. The value is expected to be in UTF-8 encoding (i.e., no IDN
encoding for mail addresses). This is a required parameter.

algo specifies the algorithm for the new key (actually a keypair of public and private
key). For a list of supported algorithms, see the GnuPG manual. If algo is NULL or
the string "default", the key is generated using the default algorithm of the engine. If
the string "future-default" is used the engine may use an algorithm which is planned
to be the default in a future release of the engine; however existing implementation
of the protocol may not be able to already handle such future algorithms. For the
OpenPGP protocol, the specification of a default algorithm, without requesting a

Chapter 7: Contexts 61

non-default usage via flags, triggers the creation of a primary key plus a secondary
key (subkey).

reserved must be set to zero.

expires specifies the expiration time in seconds. If you supply 0, a reasonable expira-
tion time is chosen. Use the flag GPGME_CREATE_NOEXPIRE to create keys that do not
expire. Note that this parameter takes an unsigned long value and not a time_t to
avoid problems on systems which use a signed 32 bit time_t. Note further that the
OpenPGP protocol uses 32 bit values for timestamps and thus can only encode dates
up to the year 2106.

extrakey is currently not used and must be set to NULL. A future version of GPGME
may use this parameter to create X.509 keys.

flags can be set to the bit-wise OR of the following flags:

GPGME_CREATE_SIGN
GPGME_CREATE_ENCR
GPGME_CREATE_CERT
GPGME_CREATE_AUTH
SINCE: 1.7.0

Do not create the key with the default capabilities (key usage) of the re-
quested algorithm but use those explicitly given by these flags: “signing”,
“encryption”, “certification”, or “authentication”. The allowed combina-
tions depend on the algorithm.

If any of these flags are set and a default algorithm has been selected only

one key is created in the case of the OpenPGP protocol.
GPGME_CREATE_NOPASSWD

SINCE: 1.7.0

Request generation of the key without password protection.
GPGME_CREATE_SELFSIGNED

SINCE: 1.7.0

For an X.509 key do not create a CSR but a self-signed certificate. This

has not yet been implemented.
GPGME_CREATE_NOSTORE

SINCE: 1.7.0

Do not store the created key in the local key database. This has not yet

been implemented.

GPGME_CREATE_WANTPUB
GPGME_CREATE_WANTSEC
SINCE: 1.7.0

Return the public or secret key as part of the result structure. This has
not yet been implemented.

GPGME_CREATE_FORCE
SINCE: 1.7.0

Chapter 7: Contexts 62

The engine does not allow the creation of a key with a user ID already
existing in the local key database. This flag can be used to override this
check.

GPGME_CREATE_NOEXPIRE
SINCE: 1.9.0

Request generation of keys that do not expire.

GPGME_CREATE_ADSK
SINCE: 1.24.0

Add an ADSK to the key. With this flag algo is expected to be the
hexified fingerprint of the ADSK to be added; this must be a subkey. If
the string "default" is used for algo the engine will add all ADSK as it
would do for new keys.

GPGME_CREATE_GROUP
SINCE: 2.0.0

Set the “group owned” flag for the new generated key or subkey.

After the operation completed successfully, information about the created key can be
retrieved with gpgme_op_genkey_result.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_createkey_start (gpgme_ctx_t ctx, [Function]
const char *userid, const char *algo, unsigned long reserved,
unsigned long expires, gpgme_key_t extrakey, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_createkey_start initiates a gpgme_op_createkey opera-
tion; see there for details. It must be completed by calling gpgme_wait on the context.
See Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_createsubkey (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *algo, unsigned long reserved,
unsigned long expires, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_createsubkey creates and adds a new subkey to the primary
OpenPGP key given by KEY. The only allowed protocol in ctx is GPGME_PROTOCOL _
OPENPGP. Subkeys (aka secondary keys) are a concept in the OpenPGP protocol to
bind several keys to a primary key. As of now this function requires at least version
2.1.13 of GnuPG.

key specifies the key to operate on.

algo specifies the algorithm for the new subkey. For a list of supported algorithms, see
the GnuPG manual. If algo is NULL or the string "default", the subkey is generated
using the default algorithm for an encryption subkey of the engine. If the string
"future-default" is used the engine may use an encryption algorithm which is planned
to be the default in a future release of the engine; however existing implementation
of the protocol may not be able to already handle such future algorithms.

Chapter 7: Contexts 63

reserved must be set to zero.

expires specifies the expiration time in seconds. If you supply 0, a reasonable expira-
tion time is chosen. Use the flag GPGME_CREATE_NOEXPIRE to create keys that do not
expire. Note that this parameter takes an unsigned long value and not a time_t to
avoid problems on systems which use a signed 32 bit time_t. Note further that the
OpenPGP protocol uses 32 bit values for timestamps and thus can only encode dates
up to the year 2106.

flags takes the same values as described above for gpgme_op_createkey.

If the GPGME_CREATE_ADSK flag is set, the subkey fingerprint given in the algo pa-
rameter is added as an ADSK to the key.

After the operation completed successfully, information about the created key can be
retrieved with gpgme_op_genkey_result.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_createsubkey_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *algo, unsigned long reserved,
unsigned long expires, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_createsubkey_start initiates a gpgme_op_createsubkey
operation; see there for details. It must be completed by calling gpgme_wait on the
context. See Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_adduid (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_adduid adds a new user ID to the OpenPGP key given by
KEY. Adding additional user IDs after key creation is a feature of the OpenPGP
protocol and thus the protocol for the context ctx must be set to OpenPGP. As of
now this function requires at least version 2.1.13 of GnuPG.

key specifies the key to operate on.

userid is the user ID to add to the key. A user ID is commonly the mail address to be
associated with the key. GPGME does not require a specific syntax but if more than
a mail address is given, RFC-822 style format is suggested. The value is expected to
be in UTF-8 encoding (i.e., no IDN encoding for mail addresses). This is a required
parameter.

flags are currently not used and must be set to zero.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_adduid_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_adduid_start initiates a gpgme_op_adduid operation; see
there for details. It must be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

Chapter 7: Contexts 64

gpgme_error_t gpgme_op_revuid (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_revuid revokes a user ID from the OpenPGP key given by
KEY. Revoking user IDs after key creation is a feature of the OpenPGP protocol
and thus the protocol for the context ctx must be set to OpenPGP. As of now this
function requires at least version 2.1.13 of GnuPG.

key specifies the key to operate on.

userid is the user ID to be revoked from the key. The user ID must be given verbatim
because the engine does an exact and case sensitive match. Thus the uid field from
the user ID object (gpgme_user_id_t) is to be used. This is a required parameter.
flags are currently not used and must be set to zero.

Note that the engine won’t allow to revoke the last valid user ID. To change a user
1D is better to first add the new user ID, then revoke the old one, and finally publish
the key.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_revuid_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_revuid_start initiates a gpgme_op_revuid operation; see
there for details. It must be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_set_ui_flag (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, cons char * name, cons char * value);
SINCE: 1.8.0

The function gpgme_op_set_uid_flag is used to set flags on a user ID from the
OpenPGP key given by KEY. Setting flags on user IDs after key creation is a feature
of the OpenPGP protocol and thus the protocol for the context ctx must be set to
OpenPGP.

key specifies the key to operate on. This parameters is required.

userid is the user ID of the key to be manipulated. This user ID must be given
verbatim because the engine does an exact and case sensitive match. Thus the uid
field from the user ID object (gpgme_user_id_t) is to be used. This is a required
parameter.

name names the flag which is to be changed. The only currently supported flag is:

primary This sets the primary key flag on the given user ID. All other primary
key flag on other user IDs are removed. value must be given as NULL.
For technical reasons this functions bumps the creation timestamp of all
affected self-signatures up by one second. At least GnuPG version 2.1.20
is required.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

Chapter 7: Contexts 65

gpgme_error_t gpgme_op_set_uid_flag_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, cons char * name, cons char * value);
SINCE: 1.8.0

The function gpgme_op_set_uid_flag_start initiates a gpgme_op_set_uid_flag
operation; see there for details. It must be completed by calling gpgme_wait on the
context. See Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_genkey (gpgme_ctx_-t ctx, [Function]
const char *parms, gpgme_data_t public, gpgme_data_t secret)
The function gpgme_op_genkey generates a new key pair in the context ctx. The
meaning of public and secret depends on the crypto backend.

GPG does not support public and secret, they should be NULL. GnuPG will generate
a key pair and add it to the standard key ring. The fingerprint of the generated key
is available with gpgme_op_genkey_result.

GpgSM requires public to be a writable data object. GpgSM will generate a secret
key (which will be stored by gpg-agent, and return a certificate request in public,
which then needs to be signed by the certification authority and imported before it
can be used. GpgSM does not make the fingerprint available.

The argument parms specifies parameters for the key in an string that looks some-
thing like XML. The details about the format of parms are specific to the crypto
engine used by ctx. The first line of the parameters must be <GnupgKeyParams
format="internal"> and the last line must be </GnupgKeyParams>. Every line in
between the first and last lines is treated as a Header: Value pair. In particular, no
XML escaping is necessary if you need to include the characters <, >, or &.

Here is an example for GnuPG as the crypto engine (all parameters of OpenPGP key
generation are documented in the GPG manual):

<GnupgKeyParms format="internal">
Key-Type: default

Subkey-Type: default

Name-Real: Joe Tester

Name-Comment: with stupid passphrase
Name-Email: joe@foo.bar

Expire-Date: 0

Passphrase: abc

</GnupgKeyParms>

Here is an example for GpgSM as the crypto engine (all parameters of OpenPGP key
generation are documented in the GPGSM manual):

<GnupgKeyParms format="internal">

Key-Type: RSA

Key-Length: 1024

Name-DN: C=de,0=gl0 code,0U=Testlab,CN=Joe 2 Tester

Name-Email: joe@foo.bar

</GnupgKeyParms>
Strings should be given in UTF-8 encoding. The only format supported for now is
“internal”. The content of the GnupgKeyParms container is passed verbatim to the
crypto backend. Control statements are not allowed.

Chapter 7: Contexts 66

After the operation completed successfully, the result can be retrieved with gpgme_
op_genkey_result.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if parms is not a well-formed string (e.g.,
does not have the expected tag-like headers and footers), GPG_ERR_NOT_SUPPORTED
if public or secret is not valid, and GPG_ERR_GENERAL if no key was created by the
backend.

gpgme_error_t gpgme_op_genkey_start (gpgme_ctx_t ctx, [Function]
const char *parms, gpgme_data_t public, gpgme_data_t secret)
The function gpgme_op_genkey_start initiates a gpgme_op_genkey operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if parms is not a valid XML string, and
GPG_ERR_NOT_SUPPORTED if public or secret is not NULL.

gpgme_genkey_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_genkey oper-
ation. After successfully generating a key, you can retrieve the pointer to the result
with gpgme_op_genkey_result. The structure contains the following members:

unsigned int primary : 1
This flag is set to 1 if a primary key was created and to 0 if not.

unsigned int sub : 1
This flag is set to 1 if a subkey was created and to 0 if not.

unsigned int uid : 1
This flag is set to 1 if a user ID was created and to 0 if not.

char *fpr This is the fingerprint of the key that was created. If both a primary
and a subkey were generated, the fingerprint of the primary key will be
returned. If the crypto engine does not provide the fingerprint, fpr will
be a null pointer.

gpgme_data_t pubkey
SINCE: 1.7.0

This will eventually be used to return the public key. It is currently not
used.

gpgme_data_t seckey

SINCE: 1.7.0
This will eventually be used to return the secret key. It is currently not
used.

gpgme_genkey_result_t gpgme_op_genkey_result [Function]

(gpgme_ctx_t ctx)
The function gpgme_op_genkey_result returns a gpgme_genkey_result_t pointer
to a structure holding the result of a gpgme_op_genkey operation. The pointer is

Chapter 7: Contexts 67

only valid if the last operation on the context was a gpgme_op_genkey or gpgme_op_
genkey_start operation, and if this operation finished successfully. The returned
pointer is only valid until the next operation is started on the context.

7.5.6 Signing Keys

Key signatures are a unique concept of the OpenPGP protocol. They can be used to certify
the validity of a key and are used to create the Web-of-Trust (WoT). Instead of using
the gpgme_op_interact function along with a finite state machine, GPGME provides a
convenient function to create key signatures when using modern GnuPG versions.

gpgme_error_t gpgme_op_keysign (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned long expires,
unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_keysign adds a new key signature to the public key KEY.
This function requires at least version 2.1.12 of GnuPG.

CTX is the usual context which describes the protocol to use (which must be
OpenPGP) and has also the list of signer keys to be used for the signature. The
common case is to use the default key for signing other keys. If another key or more
than one key shall be used for a key signature, gpgme_signers_add can be used. See
Section 7.6.4.1 [Selecting Signers]|, page 89.

key specifies the key to operate on.

userid selects the user 1D or user IDs to be signed. If userid is set to NULL all valid
user IDs are signed. The user ID must be given verbatim because the engine does an
exact and case sensitive match. Thus the uid field from the user ID object (gpgme_
user_id_t) is to be used. To select more than one user ID put them all into one
string separated by linefeeds characters (\n) and set the flag GPGME_KEYSIGN_LFSEP.

expires specifies the expiration time of the new signature in seconds. The common
case is to use 0 to not set an expiration date. However, if the configuration of the
engine defines a default expiration for key signatures, that is still used unless the
flag GPGME_KEYSIGN_NOEXPIRE is used. Note that this parameter takes an unsigned
long value and not a time_t to avoid problems on systems which use a signed 32 bit
time_t. Note further that the OpenPGP protocol uses 32 bit values for timestamps
and thus can only encode dates up to the year 2106.

flags can be set to the bit-wise OR of the following flags:
GPGME_KEYSIGN_LOCAL
SINCE: 1.7.0
Instead of creating an exportable key signature, create a key signature
which is is marked as non-exportable.
GPGME_KEYSIGN_LFSEP
SINCE: 1.7.0

Although linefeeds are uncommon in user IDs this flag is required to
explicitly declare that userid may contain several linefeed separated user
IDs.

Chapter 7: Contexts 68

GPGME_KEYSIGN_NOEXPIRE
Force the creation of a key signature without an expiration date. This
overrides expire and any local configuration of the engine.

GPGME_KEYSIGN_FORCE
Force the creation of a new signature even if one already exists. This flag
has an effect only if the gpg version is at least 2.2.28 but won’t return an
error with older versions.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_keysign_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, const char *userid, unsigned long expires,
unsigned int flags);
SINCE: 1.7.0

The function gpgme_op_keysign_start initiates a gpgme_op_keysign operation; see
there for details. It must be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

gpgme_error_t gpgme_op_revsig (gpgme_ctx_-t ctx, [Function]
gpgme_key_t key, gpgme_key_t signing_key, const char *userid,
unsigned int flags);
SINCE: 1.14.1

The function gpgme_op_revsig revokes key signatures of the public key key made
with the key signing_key. This function requires at least version 2.2.24 of GnuPG.

key specifies the key to operate on.
signing_key specifies the key whose signatures shall be revoked.

userid selects the user ID or user IDs whose signatures shall be revoked. If userid is
set to NULL the signatures on all user IDs are revoked. The user ID must be given
verbatim because the engine does an exact and case sensitive match. Thus the uid
field from the user ID object (gpgme_user_id_t) is to be used. To select more than
one user ID put them all into one string separated by linefeeds characters (\n) and
set the flag GPGME_REVSIG_LFSEP.

flags can be set to the bit-wise OR of the following flags:

GPGME_REVSIG_LFSEP
SINCE: 1.14.1

Although linefeeds are uncommon in user IDs this flag is required to
explicitly declare that userid may contain several linefeed separated user
IDs.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_revsig_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, gpgme_key_t signing_key, const char *userid,
unsigned int flags);
SINCE: 1.14.1

Chapter 7: Contexts 69

The function gpgme_op_revsig_start initiates a gpgme_op_revsig operation; see
there for details. It must be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

7.5.7 Exporting Keys

Exporting keys means the same as running gpg with the command ‘--export’. However,
a mode flag can be used to change the way the export works. The available mode flags are
described below, they may be or-ed together.

GPGME_EXPORT_MODE_EXTERN
If this bit is set, the output is send directly to the default keyserver. This is
currently only allowed for OpenPGP keys. It is good practise to not send more
than a few dozens key to a keyserver at one time. Using this flag requires that
the keydata argument of the export function is set to NULL.

GPGME_EXPORT_MODE_MINIMAL
SINCE: 1.3.1

If this bit is set, the smallest possible key is exported. For OpenPGP keys it
removes all signatures except for the latest self-signatures. For X.509 keys it
has no effect.

GPGME_EXPORT_MODE_SSH
SINCE: 1.4.0

If this bit is set, the latest authentication key of the requested OpenPGP key
is exported in the OpenSSH public key format. This accepts just a single key;
to force the export of a specific subkey a fingerprint pattern with an appended
exclamation mark may be used.

GPGME_EXPORT_MODE_SECRET
SINCE: 1.6.0

Instead of exporting the public key, the secret key is exported. This may not
be combined with GPGME_EXPORT_MODE_EXTERN. For X.509 the export format
is PKCS#38.

GPGME_EXPORT_MODE_SECRET_SUBKEY
SINCE: 1.17.0

If this bit is set, then a secret subkey is exported. The subkey to export must
be specified with fingerprint pattern with an appended exclamation mark. This
is currently only allowed for OpenPGP keys. This flag may not be combined
with GPGME_EXPORT_MODE_EXTERN. This flag is not supported by the export
functions that take an array of keys.

GPGME_EXPORT_MODE_RAW
SINCE: 1.6.0
If this flag is used with GPGME_EXPORT_MODE_SECRET for an X.509 key the export
format will be changed to PKCS#1. This flag may not be used with OpenPGP.

GPGME_EXPORT_MODE_PKCS12
SINCE: 1.6.0

Chapter 7: Contexts 70

If this flag is used with GPGME_EXPORT_MODE_SECRET for an X.509 key the export
format will be changed to PKCS#12 which also includes the certificate. This
flag may not be used with OpenPGP.

gpgme_error_t gpgme_op_export (gpgme_ctx_t ctx, [Function]
const char *pattern, gpgme_export_mode_t mode, gpgme_data_t keydata)
The function gpgme_op_export extracts public keys and returns them in the data
buffer keydata. The output format of the key data returned is determined by the
ASCII armor attribute set for the context ctx, or, if that is not set, by the encoding
specified for keydata.

If pattern is NULL, all available keys are returned. Otherwise, pattern contains an
engine specific expression that is used to limit the list to all keys matching the pattern.

mode is usually 0; other values are described above.

The function returns the error code GPG_ERR_NO_ERROR if the operation completed
successfully, GPG_ERR_INV_VALUE if keydata is not a valid empty data buffer, and
passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_export_start (gpgme_ctx_t ctx, [Function]
const char *pattern, gpgme_export_mode_t mode, gpgme_data_t keydata)
The function gpgme_op_export_start initiates a gpgme_op_export operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if keydata is not a valid empty data
buffer.

gpgme_error_t gpgme_op_export_ext (gpgme_ctx_t ctx, [Function]

const char *pattern||, gpgme_export_mode_t mode, gpgme_data_t keydata)

The function gpgme_op_export extracts public keys and returns them in the data

buffer keydata. The output format of the key data returned is determined by the

ASCII armor attribute set for the context ctx, or, if that is not set, by the encoding
specified for keydata.

If pattern or *pattern is NULL, all available keys are returned. Otherwise, pattern is
a NULL terminated array of strings that are used to limit the list to all keys matching
at least one of the patterns verbatim.

mode is usually 0; other values are described above.

The function returns the error code GPG_ERR_NO_ERROR if the operation completed
successfully, GPG_ERR_INV_VALUE if keydata is not a valid empty data buffer, and
passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_export_ext_start (gpgme_ctx_t ctx, [Function]

const char *pattern||, gpgme_export_mode_t mode, gpgme_data_t keydata)

The function gpgme_op_export_ext_start initiates a gpgme_op_export_ext oper-

ation. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion|, page 103.

Chapter 7: Contexts 71

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if keydata is not a valid empty data

buffer.
gpgme_error_t gpgme_op_export_keys (gpgme_ctx_t ctx, [Function]
gpgme_key_t keys||, gpgme_export_mode_t mode, gpgme_data_t keydata)
SINCE: 1.2.0

The function gpgme_op_export_keys extracts public keys and returns them in the
data buffer keydata. The output format of the key data returned is determined by the
ASCIT armor attribute set for the context ctx, or, if that is not set, by the encoding
specified for keydata.

The keys to export are taken form the NULL terminated array keys. Only keys of the
currently selected protocol of ctx which do have a fingerprint set are considered for
export. Other keys specified by the keys are ignored. In particular OpenPGP keys
retrieved via an external key listing are not included.

mode is usually 0; other values are described above.

The function returns the error code GPG_ERR_NO_ERROR if the operation completed
successfully, GPG_ERR_INV_VALUE if keydata is not a valid empty data buffer, GPG_
ERR_NO_DATA if no useful keys are in keys and passes through any errors that are
reported by the crypto engine support routines.

gpgme_error_t gpgme_op_export_keys_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t keys||, gpgme_export_mode_t mode, gpgme_data_t keydata)
SINCE: 1.2.0

The function gpgme_op_export_keys_start initiates a gpgme_op_export_ext oper-
ation. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if keydata is not a valid empty data
buffer, GPG_ERR_NO_DATA if no useful keys are in keys and passes through any errors
that are reported by the crypto engine support routines.

7.5.8 Importing Keys

Importing keys means the same as running gpg with the command ‘-—-import’.

gpgme_error_t gpgme_op_import (gpgme_ctx_-t ctx, [Function]
gpgme_data_t keydata)
The function gpgme_op_import adds the keys in the data buffer keydata to the key
ring of the crypto engine used by ctx. The format of keydata can be ASCII armored,
for example, but the details are specific to the crypto engine.

After the operation completed successfully, the result can be retrieved with gpgme_
op_import_result.
The function returns the error code GPG_ERR_NO_ERROR if the import was completed

successfully, GPG_ERR_INV_VALUE if ctx or keydata is not a valid pointer, and GPG_
ERR_NO_DATA if keydata is an empty data buffer.

Chapter 7: Contexts 72

gpgme_error_t gpgme_op_import_start (gpgme_ctx_t ctx, [Function]
gpgme_data_t keydata)
The function gpgme_op_import_start initiates a gpgme_op_import operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the import could be started
successfully, GPG_ERR_INV_VALUE if ctx or keydata is not a valid pointer, and GPG_
ERR_NO_DATA if keydata is an empty data buffer.

gpgme_error_t gpgme_op_import_keys (gpgme_ctx_t ctx, [Function]
gpgme_key_t *keys)
SINCE: 1.2.0

The function gpgme_op_import_keys adds the keys described by the NULL termi-
nated array keys to the key ring of the crypto engine used by ctx. It is used to
actually import and make keys permanent which have been retrieved from an exter-
nal source (i.e., using GPGME_KEYLIST_MODE_EXTERN) earlier. The external keylisting
must have been made with the same context configuration (in particular the same
home directory).! Note that for OpenPGP this may require another access to the
keyserver over the network.

Only keys of the currently selected protocol of ctx are considered for import. Other
keys specified by the keys are ignored. As of now all considered keys must have been
retrieved using the same method, i.e., the used key listing mode must be identical.

After the operation completed successfully, the result can be retrieved with gpgme_
op_import_result.

To move keys from one home directory to another, export and import the keydata
using gpgme_op_export and gpgme_op_import.

The function returns the error code GPG_ERR_NO_ERROR if the import was completed
successfully, GPG_ERR_INV_VALUE if ctx is not a valid pointer, GPG_ERR_CONFLICT if
the key listing mode does not match, and GPG_ERR_NO_DATA if no keys were considered
for import.

gpgme_error_t gpgme_op_import_keys_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t *keys)
SINCE: 1.2.0

The function gpgme_op_import_keys_start initiates a gpgme_op_import_keys op-
eration. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the import was started
successfully, GPG_ERR_INV_VALUE if ctx is not a valid pointer, GPG_ERR_CONFLICT if
the key listing mode does not match, and GPG_ERR_NO_DATA if no keys were considered
for import.

1 Thus it is a replacement for the usual workaround of exporting and then importing a key to make an
X.509 key permanent.

Chapter 7: Contexts 73

gpgme_error_t gpgme_op_receive_keys (gpgme_ctx_t ctx, [Function]
const char *keyids||)
SINCE: 1.17.0

The function gpgme_op_receive_keys adds the keys described by the NULL termi-
nated array keyids to the key ring of the crypto engine used by ctx. It is used to
retrieve and import keys from an external source. This function currently works only
for OpenPGP.

After the operation completed successfully, the result can be retrieved with gpgme_
op_import_result.

The function returns the error code GPG_ERR_NO_ERROR if the import was completed
successfully, GPG_ERR_INV_VALUE if ctx is not a valid pointer, and GPG_ERR_NO_DATA
if no keys were considered for import.

gpgme_error_t gpgme_op_receive_keys_start (gpgme_ctx_t ctx, [Function]
const char *keyids||)
SINCE: 1.17.0

The function gpgme_op_receive_keys_start initiates a gpgme_op_receive_keys
operation. It can be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the import was started
successfully, GPG_ERR_INV_VALUE if ctx is not a valid pointer, and GPG_ERR_NO_DATA
if no keys were considered for import.

gpgme_import_status_t [Data type]
This is a pointer to a structure used to store a part of the result of a gpgme_op_import
operation. For each considered key one status is added that contains information
about the result of the import. The structure contains the following members:

gpgme_import_status_t next
This is a pointer to the next status structure in the linked list, or NULL if
this is the last element.

char *fpr This is the fingerprint of the key that was considered, or NULL if the
fingerprint of the key is not known, e.g., because the key to import was
encrypted and decryption failed.

gpgme_error_t result
If the import was not successful, this is the error value that caused the
import to fail. Otherwise the error code is GPG_ERR_NO_ERROR.

unsigned int status
This is a bit-wise OR of the following flags that give more information
about what part of the key was imported. If the key was already known,
this might be 0.

GPGME_IMPORT_NEW
The key was new.

GPGME_IMPORT_UID
The key contained new user IDs.

Chapter 7: Contexts 74

GPGME_IMPORT_SIG
The key contained new signatures.

GPGME_IMPORT_SUBKEY
The key contained new sub keys.

GPGME_IMPORT_SECRET
The key contained a secret key.

gpgme_import_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_import oper-
ation. After a successful import operation, you can retrieve the pointer to the result
with gpgme_op_import_result. The structure contains the following members:

int considered
The total number of considered keys.

int no_user_id
The number of keys without user ID.

int imported
The total number of imported keys.

int imported_rsa
The number of imported RSA keys.

int unchanged
The number of unchanged keys.

int new_user_ids
The number of new user IDs.

int new_sub_keys
The number of new sub keys.

int new_signatures
The number of new signatures.

int new_revocations
The number of new revocations.

int secret_read
The total number of secret keys read.

int secret_imported
The number of imported secret keys.

int secret_unchanged
The number of unchanged secret keys.

int not_imported
The number of keys not imported.

gpgme_import_status_t imports
A list of gpgme_import_status_t objects which contain more information
about the keys for which an import was attempted.

Chapter 7: Contexts 75

int skipped_v3_keys
For security reasons modern versions of GnuPG do not anymore support
v3 keys (created with PGP 2.x) and ignores them on import. This counter
provides the number of such skipped v3 keys.

gpgme_import_result_t gpgme_op_import_result [Function]
(gpgme_ctx_t ctx)
The function gpgme_op_import_result returns a gpgme_import_result_t pointer
to a structure holding the result of a gpgme_op_import operation. The pointer is
only valid if the last operation on the context was a gpgme_op_import or gpgme_op_
import_start operation, and if this operation finished successfully. The returned
pointer is only valid until the next operation is started on the context.

7.5.9 Deleting Keys

gpgme_error_t gpgme_op_delete_ext (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, unsigned int flags)
SINCE: 1.9.1

The function gpgme_op_delete_ext deletes the key key from the key ring of the
crypto engine used by ctx.

flags can be set to the bit-wise OR of the following flags:

GPGME_DELETE_ALLOW_SECRET
SINCE: 1.9.1

If not set, only public keys are deleted. If set, secret keys are deleted as
well, if that is supported.

GPGME_DELETE_FORCE
SINCE: 1.9.1

If set, the user is not asked to confirm the deletion.

The function returns the error code GPG_ERR_NO_ERROR if the key was deleted success-
fully, GPG_ERR_INV_VALUE if ctx or key is not a valid pointer, GPG_ERR_NO_PUBKEY if
key could not be found in the keyring, GPG_ERR_AMBIGUOUS_NAME if the key was not
specified unambiguously, and GPG_ERR_CONFLICT if the secret key for key is available,
but allow_secret is zero.

gpgme_error_t gpgme_op_delete_ext_start (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, unsigned int flags)
SINCE: 1.9.1

The function gpgme_op_delete_ext_start initiates a gpgme_op_delete operation.
It can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation was started
successfully, and GPG_ERR_INV_VALUE if ctx or key is not a valid pointer.

The following functions allow only to use one particular flag. Their use is thus deprecated.

Chapter 7: Contexts 76

gpgme_error_t gpgme_op_delete (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, int allow_secret)
Similar to gpgme_op_delete_ext, but only the flag GPGME_DELETE_ALLOW_SECRET
can be provided. Actually all true values are mapped to this flag.

gpgme_error_t gpgme_op_delete_start (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, int allow_secret)
Similar to gpgme_op_delete_ext_start, but only the flag GPGME_DELETE_ALLOW_
SECRET can be provided. Actually all true values are mapped to this flag.

7.5.10 Changing Passphrases

gpgme_error_t gpgme_op_passwd (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, unsigned int flags)

SINCE: 1.3.0
The function gpgme_op_passwd changes the passphrase of the private key associated
with key. The only allowed value for flags is 0. The backend engine will usually
popup a window to ask for the old and the new passphrase. Thus this function is not
useful in a server application (where passphrases are not required anyway).
Note that old gpg engines (before version 2.0.15) do not support this command and
will silently ignore it.

gpgme_error_t gpgme_op_passwd_start (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, unsigned int flags)
SINCE: 1.3.0

The function gpgme_op_passwd_start initiates a gpgme_op_passwd operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion|, page 103.

The function returns 0 if the operation was started successfully, and an error code if
one of the arguments is not valid or the oepration could not be started.

7.5.11 Changing TOFU Data

The OpenPGP engine features a Trust-On-First-Use (TOFU) key validation model. For
resolving conflicts it is necessary to declare the policy for a key. See the GnuPG manual for
details on the TOFU implementation.

enum gpgme_tofu_policy_t [Data type]
SINCE: 1.7.0

The gpgme_tofu_policy_t type specifies the set of possible policy values that are
supported by GPGME:

GPGME_TOFU_POLICY_AUTO
Set the policy to “auto”.

GPGME_TOFU_POLICY_GOQOD
Set the policy to “good”.

GPGME_TOFU_POLICY_BAD
Set the policy to “bad”.

Chapter 7: Contexts 7

GPGME_TOFU_POLICY_ASK
Set the policy to “ask”.

GPGME_TOFU_POLICY_UNKNOWN
Set the policy to “unknown”.

To change the policy for a key the following functions can be used:

gpgme_error_t gpgme_op_tofu_policy (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, gpgme_tofu_policy_t policy)
SINCE: 1.7.0

The function gpgme_op_tofu_policy changes the TOFU policy of key. The valid val-
ues for policy are listed above. As of now this function does only work for OpenPGP
and requires at least version 2.1.10 of GnuPG.

The function returns zero on success, GPG_ERR_NOT_SUPPORTED if the engine does not
support the command, or a bunch of other error codes.

gpgme_error_t gpgme_op_tofu_policy_start (gpgme_ctx_t ctx, [Function]
const gpgme_key_t key, gpgme_tofu_policy_t policy)
SINCE: 1.7.0

The function gpgme_op_tofu_policy_start initiates a gpgme_op_tofu_policy op-
eration. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion], page 103.

The function returns 0 if the operation was started successfully, and an error code if
one of the arguments is not valid or the oepration could not be started.

7.5.12 Advanced Key Editing

gpgme_error_t (xgpgme_interact_cb_t) (void *handle, [Data type]
const char *status, const char *args, int fd)
SINCE: 1.7.0

The gpgme_interact_cb_t type is the type of functions which GPGME calls if it
a key interact operation is on-going. The status keyword status and the argument
line args are passed through by GPGME from the crypto engine. An empty string
represents EOF. The file descriptor fd is -1 for normal status messages. If status
indicates a command rather than a status message, the response to the command
should be written to fd. The handle is provided by the user at start of operation.

The function should return GPG_ERR_FALSE if it did not handle the status code, 0 for
success, or any other error value.

gpgme_error_t gpgme_op_interact (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, unsigned int flags, gpgme_interact_cb_t fnc,
void *handle, gpgme_data_t out)
SINCE: 1.7.0
The function gpgme_op_interact processes the key KEY interactively, using the
interact callback function FNC with the handle HANDLE. The callback is invoked
for every status and command request from the crypto engine. The output of the
crypto engine is written to the data object out.

Chapter 7: Contexts 78

Note that the protocol between the callback function and the crypto engine is specific
to the crypto engine and no further support in implementing this protocol correctly
is provided by GPGME.

flags modifies the behaviour of the function; the only defined bit value is:

GPGME_INTERACT_CARD
SINCE: 1.7.0

This is used for smartcard based keys and uses gpg’s ——card-edit com-
mand.

The function returns 0 if the edit operation completes successfully, GPG_ERR_INV_
VALUE if ctx or key is not a valid pointer, and any error returned by the crypto engine
or the edit callback handler.

gpgme_error_t gpgme_op_interact_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, unsigned int flags, gpgme_interact_cb_t fnc,
void *handle, gpgme_data_t out)
SINCE: 1.7.0

The function gpgme_op_interact_start initiates a gpgme_op_interact operation.
It can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion], page 103.

The function returns 0 if the operation was started successfully, and GPG_ERR_INV_
VALUE if ctx or key is not a valid pointer.

7.6 Crypto Operations

Sometimes, the result of a crypto operation returns a list of invalid keys encountered in
processing the request. The following structure is used to hold information about such a
key.

gpgme_invalid_key_t [Data type]
This is a pointer to a structure used to store a part of the result of a crypto operation
which takes user IDs as one input parameter. The structure contains the following
members:

gpgme_invalid_key_t next
This is a pointer to the next invalid key structure in the linked list, or
NULL if this is the last element.

char *fpr The fingerprint or key ID of the invalid key encountered.

gpgme_error_t reason
An error code describing the reason why the key was found invalid.

7.6.1 Decrypt

gpgme_error_t gpgme_op_decrypt (gpgme_ctx_t ctx, [Function]
gpgme_data_t cipher, gpgme_data_t plain)

The function gpgme_op_decrypt decrypts the ciphertext in the data object cipher

or, if a file name is set on the data object, the ciphertext stored in the corresponding

Chapter 7: Contexts 79

file. The decrypted ciphertext is stored into the data object plain or written to the
file set with gpgme_data_set_file_name for the data object plain.

The function returns the error code GPG_ERR_NO_ERROR if the ciphertext could be de-
crypted successfully, GPG_ERR_INV_VALUE if ctx, cipher or plain is not a valid pointer,
GPG_ERR_NO_DATA if cipher does not contain any data to decrypt, GPG_ERR_DECRYPT_
FAILED if cipher is not a valid cipher text, GPG_ERR_BAD_PASSPHRASE if the passphrase
for the secret key could not be retrieved, and passes through some errors that are re-
ported by the crypto engine support routines.

gpgme_error_t gpgme_op_decrypt_start (gpgme_ctx_t ctx, [Function]
gpgme_data_t cipher, gpgme_data_t plain)
The function gpgme_op_decrypt_start initiates a gpgme_op_decrypt operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if cipher or plain is not a valid pointer.

gpgme_error_t gpgme_op_decrypt_ext (gpgme_ctx_t ctx, [Function]
gpgme_decrypt_flags_t flags, gpgme_data_t cipher, gpgme_data_t plain)
SINCE: 1.8.0

The function gpgme_op_decrypt_ext is the same as gpgme_op_decrypt but has an
additional argument flags. If flags is 0 both function behave identically.

If the flag GPGME_DECRYPT_ARCHIVE is set, then an encrypted archive in the data
object cipher is decrypted and extracted. The content of the archive is extracted into
a directory named GPGARCH_n_ (where n is a number) or into the directory set with
gpgme_data_set_file_name for the data object plain.

The value in flags is a bitwise-or combination of one or multiple of the following bit
values:

GPGME_DECRYPT_VERIFY
SINCE: 1.8.0

The GPGME_DECRYPT_VERIFY symbol specifies that this function shall ex-
actly act as gpgme_op_decrypt_verify.

GPGME_DECRYPT_ARCHIVE
SINCE: 1.19.0

The GPGME_DECRYPT_ARCHIVE symbol specifies that the input is an en-
crypted archive that shall be decrypted and extracted. This feature is
currently only supported for the OpenPGP crypto engine and requires
GnuPG 2.4.1.

GPGME_DECRYPT_UNWRAP
SINCE: 1.8.0
The GPGME_DECRYPT_UNWRAP symbol specifies that the output shall be an
OpenPGP message with only the encryption layer removed. This requires
GnuPG 2.1.12 and works only for OpenPGP. This is the counterpart to
GPGME_ENCRYPT_WRAP.

Chapter 7: Contexts 80

GPGME_DECRYPT_LIST
SINCE: 2.0.0

The GPGME_DECRYPT_LIST symbol specifies that the actual decryption
step of an OpenPGP message shall be skipped. This can be used to
information on the keyids of the recipients of some encrypted data. Note
that most other result items have no or no useful information in this case.

The function returns the error codes as described for gpgme_op_decrypt.

gpgme_error_t gpgme_op_decrypt_ext_start (gpgme_ctx_t ctx, [Function]
gpgme_decrypt_flags_t flags, gpgme_data_t cipher, gpgme_data_t plain)
SINCE: 1.8.0

The function gpgme_op_decrypt_ext_start initiates a gpgme_op_decrypt_ext op-
eration. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if cipher or plain is not a valid pointer.

gpgme_recipient_t [Data type]
SINCE: 1.1.0

This is a pointer to a structure used to store information about the recipient of an en-
crypted text which is decrypted in a gpgme_op_decrypt operation. This information
(except for the status field) is even available before the operation finished successfully,
for example in a passphrase callback. The structure contains the following members:

gpgme_recipient_t next
This is a pointer to the next recipient structure in the linked list, or NULL
if this is the last element.

gpgme_pubkey_algo_t
The public key algorithm used in the encryption.

char *keyid
This is the key ID of the key (in hexadecimal digits) used as recipient.

gpgme_error_t status
This is an error number with the error code GPG_ERR_NO_SECKEY if
the secret key for this recipient is not available, and 0 otherwise.

gpgme_decrypt_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_decrypt
operation. After successfully decrypting data, you can retrieve the pointer to the
result with gpgme_op_decrypt_result. As with all result structures, it this structure
shall be considered read-only and an application must not allocate such a strucure on
its own. The structure contains the following members:

char *unsupported_algorithm
If an unsupported algorithm was encountered, this string describes the
algorithm that is not supported.

Chapter 7: Contexts 81

unsigned int wrong_key_usage : 1
SINCE: 0.9.0 This is true if the key was not used according to its policy.

unsigned int legacy_cipher_nomdc : 1
SINCE: 1.11.2 The message was made by a legacy algorithm without any
integrity protection. This might be an old but legitimate message.

unsigned int is_mime : 1;
SINCE: 1.11.0 The message claims that the content is a MIME object.

unsigned int is_de_vs : 1;
SINCE: 1.10.0 The message was encrypted in a VS-NfD compliant way.
This is a specification in Germany for a restricted communication level.

unsigned int beta_compliance : 1;
SINCE: 1.24.0 The compliance flags (e.g. is_de_vs) are set but the software
has not yet been approved or is in a beta state.

gpgme_recipient_t recipients
SINCE: 1.1.0
This is a linked list of recipients to which this message was encrypted.

char *file_name
This is the filename of the original plaintext message file if it is known,
otherwise this is a null pointer.

char *session_key
SINCE: 1.8.0
A textual representation (nul-terminated string) of the session key used in
symmetric encryption of the message, if the context has been set to ex-
port session keys (see gpgme_set_ctx_flag, "export-session-key"),
and a session key was available for the most recent decryption operation.
Otherwise, this is a null pointer.

You must not try to access this member of the struct unless
gpgme_set_ctx_flag (ctx, "export-session-key") returns success
or gpgme_get_ctx_flag (ctx, "export-session-key") returns true
(non-empty string).

char *symkey_algo
SINCE: 1.11.0
A string with the symmetric encryption algorithm and mode using the
format "<algo>.<mode>". Note that the deprecated non-MDC encryption
mode of OpenPGP is given as "PGPCFB".

gpgme_decrypt_result_t gpgme_op_decrypt_result [Function]
(gpgme_ctx_t ctx)

The function gpgme_op_decrypt_result returns a gpgme_decrypt_result_t
pointer to a structure holding the result of a gpgme_op_decrypt operation. The
pointer is only valid if the last operation on the context was a gpgme_op_decrypt or
gpgme_op_decrypt_start operation. If the operation failed this might be a NULL
pointer. The returned pointer is only valid until the next operation is started on the
context.

Chapter 7: Contexts 82

7.6.2 Verify

gpgme_error_t gpgme_op_verify (gpgme_ctx_t ctx, [Function]
gpgme_data_t sig, gpgme_data_t signed_text, gpgme_data_t plain)

The function gpgme_op_verify verifies that the signature in the data object sig is
a valid signature. If sig is a detached signature, then the signed text should be
provided in signed_text and plain should be a null pointer. Otherwise, if sig is a
normal (or cleartext) signature, signed_text should be a null pointer and plain should
be a writable data object that will contain the plaintext after successful verification.
If a file name is set on the data object sig (or on the data object signed_text), then
the data of the signature (resp. the data of the signed text) is not read from the data
object but from the file with the given file name. If a file name is set on the data
object plain then the plaintext is not stored in the data object but it is written to a
file with the given file name.

The results of the individual signature verifications can be retrieved with gpgme_op_
verify_result.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
completed successfully, GPG_ERR_INV_VALUE if ctx, sig or plain is not a valid pointer,
GPG_ERR_NO_DATA if sig does not contain any data to verify, and passes through any
errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_verify_start (gpgme_ctx_t ctx, [Function]
gpgme_data_t sig, gpgme_data_t signed_text, gpgme_data_t plain)
The function gpgme_op_verify_start initiates a gpgme_op_verify operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if ctx, sig or plain is not a valid pointer,
and GPG_ERR_NO_DATA if sig or plain does not contain any data to verify.

gpgme_error_t gpgme_op_verify_ext (gpgme_ctx_t ctx, [Function]

gpgme_verify_flags_t flags, gpgme_data_t sig, gpgme_data_t signed_text,
gpgme_data_t plain)

The function gpgme_op_verify_ext is the same as gpgme_op_verify but has an

additional argument flags. If flags is 0 both function behave identically.

If the flag GPGME_VERIFY_ARCHIVE is set, then a signed archive in the data object

sig is verified and extracted. The content of the archive is extracted into a directory

named GPGARCH_n_ (where n is a number) or into the directory set with gpgme_data_

set_file_name for the data object plain.

The value in flags is a bitwise-or combination of one or multiple of the following bit

values:

GPGME_VERIFY_ARCHIVE
SINCE: 1.19.0

The GPGME_VERIFY_ARCHIVE symbol specifies that the input is a signed
archive that shall be verified and extracted. This feature is currently only
supported for the OpenPGP crypto engine and requires GnuPG 2.4.1.

Chapter 7: Contexts 83

The function returns the error codes as descriped for gpgme_op_decrypt respective
gpgme_op_encrypt.

gpgme_error_t gpgme_op_verify_ext_start (gpgme_ctx_t ctx, [Function]
gpgme_verify_flags_t flags, gpgme_data_t sig, gpgme_data_t signed_text,
gpgme_data_t plain)
The function gpgme_op_verify_ext_start initiates a gpgme_op_verify_ext oper-
ation. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion|, page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if ctx, sig or plain is not a valid pointer,
and GPG_ERR_NO_DATA if sig or plain does not contain any data to verify.

gpgme_sig_notation_t [Data type]
This is a pointer to a structure used to store a part of the result of a gpgme_op_verify
operation. The structure contains the following members:

gpgme_sig_notation_t next
This is a pointer to the next new signature notation structure in the
linked list, or NULL if this is the last element.

char *name
The name of the notation field. If this is NULL, then the member value
will contain a policy URL.

int name_len
The length of the name field. For strings the length is counted without
the trailing binary zero.

char *value
The value of the notation field. If name is NULL, then this is a policy URL.

int value_len
The length of the value field. For strings the length is counted without
the trailing binary zero.

gpgme_sig_notation_flags_t flags
The accumulated flags field. This field contains the flags associated with
the notation data in an accumulated form which can be used as an ar-
gument to the function gpgme_sig_notation_add. The value flags is a
bitwise-or combination of one or multiple of the following bit values:

GPGME_SIG_NOTATION_HUMAN_READABLE
SINCE: 1.1.0
The GPGME_SIG_NOTATION_HUMAN_READABLE Symbol Speciﬁes
that the notation data is in human readable form
GPGME_SIG_NOTATION_CRITICAL
SINCE: 1.1.0

The GPGME_SIG_NOTATION_CRITICAL symbol specifies that
the notation data is critical.

Chapter 7: Contexts 84

unsigned int human_readable : 1
This is true if the GPGME_SIG_NOTATION_HUMAN_READABLE flag is set and
false otherwise. This flag is only valid for notation data, not for policy
URLs.

unsigned int critical : 1
This is true if the GPGME_SIG_NOTATION_CRITICAL flag is set and false
otherwise. This flag is valid for notation data and policy URLs.

gpgme_signature_t [Data type]
This is a pointer to a structure used to store a part of the result of a gpgme_op_verify
operation. The structure contains the following members:

gpgme_signature_t next
This is a pointer to the next new signature structure in the linked list, or
NULL if this is the last element.

gpgme_sigsum_t summary
This is a bit vector giving a summary of the signature status. It provides
an easy interface to a defined semantic of the signature status. Checking
just one bit is sufficient to see whether a signature is valid without any re-
strictions. This means that you can check for GPGME_SIGSUM_VALID
like this:

if ((sig.summary & GPGME_SIGSUM_VALID))

{
..do stuff if valid..

}

else

{
..do stuff if not fully valid..

}
The defined bits are:

GPGME_SIGSUM_VALID
The signature is fully valid.

GPGME_SIGSUM_GREEN
The signature is good but one might want to display some
extra information. Check the other bits.

GPGME_SIGSUM_RED
The signature is bad. It might be useful to check other bits
and display more information, i.e., a revoked certificate might
not render a signature invalid when the message was received
prior to the cause for the revocation.

GPGME_SIGSUM_KEY_REVOKED
The key or at least one certificate has been revoked.

GPGME_SIGSUM_KEY_EXPIRED
The key or one of the certificates has expired. It is probably
a good idea to display the date of the expiration.

Chapter 7: Contexts 85

GPGME_SIGSUM_SIG_EXPIRED
The signature has expired.

GPGME_SIGSUM_KEY_MISSING
Can’t verify due to a missing key or certificate.

GPGME_SIGSUM_CRL_MISSING
The CRL (or an equivalent mechanism) is not available.

GPGME_SIGSUM_CRL_T0OO_OLD
Available CRL is too old.

GPGME_SIGSUM_BAD_POLICY
A policy requirement was not met.

GPGME_SIGSUM_SYS_ERROR
A system error occurred.

GPGME_SIGSUM_TOFU_CONFLICT
A TOFU conflict was detected.

char *fpr This is the fingerprint or key ID of the signature.

gpgme_error_t status
This is the status of the signature. In particular, the following status
codes are of interest:

GPG_ERR_NO_ERROR
This status indicates that the signature could be verified or
that there is no signature. For the combined result this status
means that all signatures could be verified.

Note: This does not mean that a valid signature could be
found. Check the summary field for that.

For example a gpgme_op_decrypt_verify returns a verifica-
tion result with GPG_ERR_NO_ERROR for encrypted but
unsigned data.

GPG_ERR_SIG_EXPIRED
This status indicates that the signature is valid but expired.
For the combined result this status means that all signatures
are valid and expired.

GPG_ERR_KEY_EXPIRED
This status indicates that the signature is valid but the key
used to verify the signature has expired. For the combined
result this status means that all signatures are valid and all
keys are expired.

GPG_ERR_CERT_REVOKED
This status indicates that the signature is valid but the key
used to verify the signature has been revoked. For the com-
bined result this status means that all signatures are valid
and all keys are revoked.

Chapter 7: Contexts 86

GPG_ERR_BAD_SIGNATURE
This status indicates that the signature is invalid. For the
combined result this status means that all signatures are in-
valid.

GPG_ERR_NO_PUBKEY
This status indicates that the signature could not be verified
due to a missing key. For the combined result this status
means that all signatures could not be checked due to missing
keys.

GPG_ERR_GENERAL

This status indicates that there was some other error which
prevented the signature verification.

gpgme_sig_notation_t notations
This is a linked list with the notation data and policy URLs.

unsigned long timestamp
The creation timestamp of this signature.

unsigned long exp_timestamp
The expiration timestamp of this signature, or 0 if the signature does not
expire.

unsigned int wrong_key_usage : 1
This is true if the key was not used according to its policy.

unsigned int pka_trust : 2
This is set to the trust information gained by means of the PKA system.

Values are:

0 No PKA information available or verification not possible.
1 PKA verification failed.

2 PKA verification succeeded.

3 Reserved for future use.

Depending on the configuration of the engine, this metric may also be
reflected by the validity of the signature.

unsigned int chain_model : 1
SINCE: 1.1.6

This is true if the validity of the signature has been checked using the
chain model. In the chain model the time the signature has been created
must be within the validity period of the certificate and the time the
certificate itself has been created must be within the validity period of
the issuing certificate. In contrast the default validation model checks the
validity of signature as well at the entire certificate chain at the current
time.

unsigned int is_de_vs : 1;
SINCE: 1.10.0 The signature was created in a VS-NfD compliant way.
This is a specification in Germany for a restricted communication level.

Chapter 7: Contexts 87

unsigned int beta_compliance : 1;
SINCE: 1.24.0 The compliance flags (e.g. is_de_vs) are set but the software
has not yet been approved or is in a beta state.

gpgme_validity_t validity
The validity of the signature.

gpgme_error_t validity_reason
If a signature is not valid, this provides a reason why.

gpgme_pubkey_algo_t
The public key algorithm used to create this signature.

gpgme_hash_algo_t
The hash algorithm used to create this signature.

char *pka_address
The mailbox from the PKA information or NULL.

gpgme_key_t key
SINCE: 1.7.0
An object describing the key used to create the signature. This key object
may be incomplete in that it only conveys information availabale directly
with a signature. It may also be NULL if such information is not readily
available.

gpgme_verify_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_verify op-
eration. After verifying a signature, you can retrieve the pointer to the result with
gpgme_op_verify_result. If the operation failed this might be a NULL pointer. The
structure contains the following member:

gpgme_signature_t signatures
A linked list with information about all signatures for which a verification
was attempted.

char *file_name
This is the filename of the original plaintext message file if it is known,
otherwise this is a null pointer. Warning: The filename is not covered by
the signature.

unsigned int is_mime : 1;
SINCE: 1.11.0

The message claims that the content is a MIME object. Warning: This
flag is not covered by the signature.

gpgme_verify_result_t gpgme_op_verify_result [Function]
(gpgme_ctx_t ctx)

The function gpgme_op_verify_result returns a gpgme_verify_result_t pointer

to a structure holding the result of a gpgme_op_verify operation. The pointer is only

valid if the last operation on the context was a gpgme_op_verify, gpgme_op_verify_

start, gpgme_op_decrypt_verify or gpgme_op_decrypt_verify_start operation,

Chapter 7: Contexts 88

and if this operation finished successfully (for gpgme_op_decrypt_verify and gpgme_
op_decrypt_verify_start, the error code GPG_ERR_NO_DATA counts as successful in
this context). The returned pointer is only valid until the next operation is started
on the context.

7.6.3 Decrypt and Verify

gpgme_error_t gpgme_op_decrypt_verify (gpgme_ctx_t ctx, [Function]
gpgme_data_t cipher, gpgme_data_t plain)
The function gpgme_op_decrypt_verify decrypts the ciphertext in the data object
cipher and stores it into the data object plain. If cipher contains signatures, they will
be verified.

After the operation completed, gpgme_op_decrypt_result and gpgme_op_verify_
result can be used to retrieve more information about the signatures.

If the error code GPG_ERR_NO_DATA is returned, cipher does not contain any data to
decrypt. However, it might still be signed. The information about detected signatures
is available with gpgme_op_verify_result in this case.

The function returns the error code GPG_ERR_NO_ERROR if the ciphertext could be de-
crypted successfully, GPG_ERR_INV_VALUE if ctx, cipher or plain is not a valid pointer,
GPG_ERR_NO_DATA if cipher does not contain any data to decrypt, GPG_ERR_DECRYPT_
FATILED if cipher is not a valid cipher text, GPG_ERR_BAD_PASSPHRASE if the passphrase
for the secret key could not be retrieved, and passes through any errors that are re-
ported by the crypto engine support routines.

gpgme_error_t gpgme_op_decrypt_verify_start [Function]
(gpgme_ctx_t ctx, gpgme_data_t cipher, gpgme_data_t plain)
The function gpgme_op_decrypt_verify_start initiates a gpgme_op_decrypt_
verify operation. It can be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if ctx, cipher, plain or r_stat is not a valid
pointer, and GPG_ERR_NO_DATA if cipher does not contain any data to decrypt.

When processing mails it is sometimes useful to extract the actual mail address (the
“addr-spec”) from a string. GPGME provides this helper function which uses the same
semantics as the internal functions in GPGME and GnuPG:

char * gpgme_addrspec_from_uid (const char *uid) [Function]
SINCE: 1.7.1

Return the mail address (called “addr-spec” in RFC-5322) from the string uid which
is assumed to be a user id (called “address” in RFC-5322). All plain ASCII characters
(i.e., those with bit 7 cleared) in the result are converted to lowercase. Caller must
free the result using gpgme_free. Returns NULL if no valid address was found (in
which case ERRNO is set to EINVAL) or for other errors.

Chapter 7: Contexts 89

7.6.4 Sign

A signature can contain signatures by one or more keys. The set of keys used to create a
signatures is contained in a context, and is applied to all following signing operations in
this context (until the set is changed).

7.6.4.1 Selecting Signers

The key or the keys used to create a signature are stored in the context. The following
functions can be used to manipulate this list. If no signer has been set into the context a
default key is used for signing.

void gpgme_signers_clear (gpgme_ctx_t ctx) [Function]
The function gpgme_signers_clear releases a reference for each key on the signers
list and removes the list of signers from the context ctx.

Every context starts with an empty list.

gpgme_error_t gpgme_signers_add (gpgme-ctx_t ctx, [Function]
const gpgme_key_t key)
The function gpgme_signers_add adds the key key to the list of signers in the context
ctx. If the key has the subkey_match flag set (i.e. it was found via a fingerprint with
"I’ suffix) that specific subkey is used for signing.

Calling this function acquires an additional reference for the key.

unsigned int gpgme_signers_count (const gpgme_ctx_t ctx) [Function]
SINCE: 1.4.3
The function gpgme_signers_count returns the number of signer keys in the context
ctx.

gpgme_key_t gpgme_signers_enum (const gpgme_ctx_t ctx, int seq) [Function]

The function gpgme_signers_enum returns the seqth key in the list of signers in the
context ctx. An additional reference is acquired for the user.

If seq is out of range, NULL is returned.
7.6.4.2 Creating a Signature

enum gpgme_sig_mode_t [Data type]
The gpgme_sig_mode_t type is used to specify the desired type of a signature. The
following modes are available:

GPGME_SIG_MODE_NORMAL
A normal signature is made, the output includes the plaintext and the
signature.

GPGME_SIG_MODE_DETACH
A detached signature is made.

GPGME_SIG_MODE_CLEAR
A clear text signature is made. The ASCII armor and text mode settings
of the context are ignored.

Chapter 7: Contexts 90

GPGME_SIG_MODE_ARCHIVE
SINCE: 1.19.0

A signed archive is created from the given files and directories. This
feature is currently only supported for the OpenPGP crypto engine and
requires GnuPG 2.4.1.

GPGME_SIG_MODE_FILE
SINCE: 1.24.0

The filename set with gpgme_data_set_file_name for the data object
plain is passed to gpg, so that gpg reads the plaintext directly from
this file instead of from the data object plain. This flag can be
combined with GPGME_SIG_MODE_NORMAL, GPGME_SIG_MODE_DETACH, and
GPGME_SIG_MODE_CLEAR, but not with GPGME_SIG_MODE_ARCHIVE. This
feature is currently only supported for the OpenPGP crypto engine.

gpgme_error_t gpgme_op_sign (gpgme_ctx_t ctx, [Function]
gpgme_data_t plain, gpgme_data_t sig, gpgme_sig-mode_t mode)

The function gpgme_op_sign creates a signature for the text in the data object plain
and returns it in the data object sig or writes it directly to the file set with gpgme_
data_set_file_name for the data object sig. The type of the signature created is
determined by the ASCII armor (or, if that is not set, by the encoding specified for
sig), the text mode attributes set for the context ctx and the requested signature
mode mode.

If the signature mode flag GPGME_SIG_MODE_FILE is set and a filename has been set
with gpgme_data_set_file_name for the data object plain, then this filename is
passed to gpg, so that gpg reads the plaintext directly from this file instead of from
the data object plain.

If signature mode GPGME_SIG_MODE_ARCHIVE is requested then a signed archive is
created from the files and directories given as NUL-separated list in the data object
plain. The paths of the files and directories have to be given as paths relative to the
current working directory or relative to the base directory set with gpgme_data_set_
file_name for the data object plain.

After the operation completed successfully, the result can be retrieved with gpgme_
op_sign_result.

If an S/MIME signed message is created using the CMS crypto engine, the number
of certificates to include in the message can be specified with gpgme_set_include_
certs. See Section 7.4.8 [Included Certificates], page 37.

The function returns the error code GPG_ERR_NO_ERROR if the signature could be
created successfully, GPG_ERR_INV_VALUE if ctx, plain or sig is not a valid pointer,
GPG_ERR_NO_DATA if the signature could not be created, GPG_ERR_BAD_PASSPHRASE if
the passphrase for the secret key could not be retrieved, GPG_ERR_UNUSABLE_SECKEY
if there are invalid signers, and passes through any errors that are reported by the
crypto engine support routines.

Chapter 7: Contexts 91

gpgme_error_t gpgme_op_sign_start (gpgme_ctx_t ctx, [Function]
gpgme_data_t plain, gpgme_data_t sig, gpgme_sig-mode_t mode)
The function gpgme_op_sign_start initiates a gpgme_op_sign operation. It can be
completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting For
Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if ctx, plain or sig is not a valid pointer.

gpgme_new_signature_t [Data type]
This is a pointer to a structure used to store a part of the result of a gpgme_op_sign
operation. The structure contains the following members:

gpgme_new_signature_t next
This is a pointer to the next new signature structure in the linked list, or
NULL if this is the last element.

gpgme_sig_mode_t type
The type of this signature.

gpgme_pubkey_algo_t pubkey_algo
The public key algorithm used to create this signature.

gpgme_hash_algo_t hash_algo
The hash algorithm used to create this signature.

unsigned int sig_class
The signature class of this signature. Note that only the values 0, 1, and
2 are well-defined.

unsigned long int timestamp
The creation timestamp of this signature.

char *fpr The fingerprint of the key which was used to create this signature.

gpgme_sign_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_sign operation.
After successfully generating a signature, you can retrieve the pointer to the result
with gpgme_op_sign_result. The structure contains the following members:

gpgme_invalid_key_t invalid_signers
A linked list with information about all invalid keys for which a signature
could not be created.

gpgme_new_signature_t signatures
A linked list with information about all signatures created.

gpgme_sign_result_t gpgme_op_sign_result (gpgme_ctx_t ctx) [Function]
The function gpgme_op_sign_result returns a gpgme_sign_result_t pointer to a
structure holding the result of a gpgme_op_sign operation. The pointer is only valid
if the last operation on the context was a gpgme_op_sign, gpgme_op_sign_start,
gpgme_op_encrypt_sign or gpgme_op_encrypt_sign_start operation. If that op-
eration failed, the function might return a NULL pointer. The returned pointer is only
valid until the next operation is started on the context.

Chapter 7: Contexts 92

7.6.4.3 Signature Notation Data

Using the following functions, you can attach arbitrary notation data to a signature. This
information is then available to the user when the signature is verified.

void gpgme_sig_notation_clear (gpgme_ctx_t ctx) [Function]
SINCE: 1.1.0

The function gpgme_sig_notation_clear removes the notation data from the con-
text ctx. Subsequent signing operations from this context will not include any nota-
tion data.

Every context starts with an empty notation data list.

gpgme_error_t gpgme_sig_notation_add (gpgme_ctx_t ctx, [Function]
const char *name, const char *value, gpgme_sig_notation_flags_t flags)
SINCE: 1.1.0

The function gpgme_sig_notation_add adds the notation data with the name name
and the value value to the context ctx.

Subsequent signing operations will include this notation data, as well as any other
notation data that was added since the creation of the context or the last gpgme_
sig_notation_clear operation.

The arguments name and value must be NUL-terminated strings in human-readable
form. The flag GPGME_SIG_NOTATION_HUMAN_READABLE is implied (non-human-
readable notation data is currently not supported). The strings must be in UTF-8
encoding.

If name is NULL, then value should be a policy URL.

The function gpgme_sig_notation_add returns the error code GPG_ERR_NO_ERROR if
the notation data could be added successfully, GPG_ERR_INV_VALUE if ctx is not a valid
pointer, or if name, value and flags are an invalid combination. The function also
passes through any errors that are reported by the crypto engine support routines.

gpgme_sig_notation_t gpgme_sig_notation_get [Function]
(const gpgme_ctx_t ctx)
SINCE: 1.1.0

The function gpgme_sig_notation_get returns the linked list of notation data struc-
tures that are contained in the context ctx.

If ctx is not a valid pointer, or there is no notation data added for this context, NULL

is returned.

7.6.5 Encrypt

One plaintext can be encrypted for several recipients at the same time. The list of recipients
is created independently of any context, and then passed to the encryption operation.

Chapter 7: Contexts 93

7.6.5.1 Encrypting a Plaintext

gpgme_error_t gpgme_op_encrypt (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl|, gpgme_encrypt_flags_t flags, gpgme_data_t plain,
gpgme_data_t cipher)
The function gpgme_op_encrypt encrypts the plaintext in the data object plain for
the recipients recp and stores the ciphertext in the data object cipher or writes it
directly to the file set with gpgme_data_set_file_name for the data object cipher.
The type of the ciphertext created is determined by the ASCII armor (or, if that is
not set, by the encoding specified for cipher) and the text mode attributes set for the
context ctx. If a filename has been set with gpgme_data_set_file_name for the data
object plain then this filename is stored in the ciphertext.

If the flag GPGME_ENCRYPT_FILE is set and a filename has been set with gpgme_data_
set_file_name for the data object plain, then this filename is passed to gpg, so that
gpg reads the plaintext directly from this file instead of from the data object plain.

If the flag GPGME_ENCRYPT_ARCHIVE is set, then an encrypted archive is created from
the files and directories given as NUL-separated list in the data object plain. The
paths of the files and directories have to be given as paths relative to the current
working directory or relative to the base directory set with gpgme_data_set_file_
name for the data object plain.

recp must be a NULL-terminated array of keys. The user must keep references for all
keys during the whole duration of the call (but see gpgme_op_encrypt_start for the
requirements with the asynchronous variant).

The value in flags is a bitwise-or combination of one or multiple of the following bit
values:

GPGME_ENCRYPT_ALWAYS_TRUST
The GPGME_ENCRYPT_ALWAYS_TRUST symbol specifies that all the recipi-
ents in recp should be trusted, even if the keys do not have a high enough
validity in the keyring. This flag should be used with care; in general it
is not a good idea to use any untrusted keys.

For the S/MIME (CMS) protocol this flag allows to encrypt to a certifi-
cate without running any checks on the validity of the certificate.

GPGME_ENCRYPT_NO_ENCRYPT_TO
SINCE: 1.2.0

The GPGME_ENCRYPT_NO_ENCRYPT_TO symbol specifies that no default or
hidden default recipients as configured in the crypto backend should be
included. This can be useful for managing different user profiles.

GPGME_ENCRYPT_NO_COMPRESS
SINCE: 1.5.0

The GPGME_ENCRYPT_NO_COMPRESS symbol specifies that the plaintext
shall not be compressed before it is encrypted. This is in some cases use-
ful if the length of the encrypted message may reveal information about
the plaintext.

Chapter 7: Contexts 94

GPGME_ENCRYPT_PREPARE

GPGME_ENCRYPT_EXPECT_SIGN
The GPGME_ENCRYPT_PREPARE symbol is used with the Ul Server protocol
to prepare an encryption (i.e., sending the PREP_ENCRYPT command).
With the GPGME_ENCRYPT_EXPECT_SIGN symbol the UI Server is advised
to also expect a sign command.

GPGME_ENCRYPT_SYMMETRIC
SINCE: 1.7.0
The GPGME_ENCRYPT_SYMMETRIC symbol specifies that the output should
be additionally encrypted symmetrically even if recipients are provided.
This feature is only supported for the OpenPGP crypto engine.

GPGME_ENCRYPT_ADD_RECP
GPGME_ENCRYPT_CHG_RECP
SINCE: 1.24.0

Instead of encrypting, decrypt the input and write an output which is
additionally encrypted to the specified keys. The CHG flag is similar but
does not add encryption to the specified keys but existing encryption keys
by the new ones. This feature is only supported for the OpenPGP crypto
engine and requires at least GnuPG version 2.5.1.

GPGME_ENCRYPT_THROW_KEYIDS
SINCE: 1.8.0

The GPGME_ENCRYPT_THROW_KEYIDS symbols requests that the identifiers
for the decrption keys are not included in the ciphertext. On the receiving
side, the use of this flag may slow down the decryption process because
all available secret keys must be tried. This flag is only honored for
OpenPGP encryption.

GPGME_ENCRYPT_WRAP
SINCE: 1.8.0
The GPGME_ENCRYPT_WRAP symbol specifies that the input is an OpenPGP
message and not a plain data. This is the counterpart to GPGME_DECRYPT_
UNWRAP.

GPGME_ENCRYPT_WANT_ADDRESS
SINCE: 1.11.0

The GPGME_ENCRYPT_WANT_ADDRESS symbol requests that all supplied
keys or key specifications include a syntactically valid mail address. If this
is not the case the operation is not even tried and the error code GPG_ERR_
INV_USER_ID is returned. Only the address part of the key specification
is conveyed to the backend. As of now the key must be specified using
the recpstring argument of the extended encrypt functions. This feature
is currently only supported for the OpenPGP crypto engine.

GPGME_ENCRYPT_ARCHIVE
SINCE: 1.19.0

The GPGME_ENCRYPT_ARCHIVE symbol specifies that the input is a NUL-
separated list of file paths and directory paths that shall be encrypted into

Chapter 7: Contexts 95

an archive. This feature is currently only supported for the OpenPGP
crypto engine and requires GnuPG 2.4.1.

GPGME_ENCRYPT_FILE
SINCE: 1.24.0

The GPGME_ENCRYPT_FILE symbol specifies that the filename set with
gpgme_data_set_file_name for the data object plain is passed to gpg,
so that gpg reads the plaintext directly from this file instead of from
the data object plain. This feature is currently only supported for the
OpenPGP crypto engine.

If GPG_ERR_UNUSABLE_PUBKEY is returned, some recipients in recp are invalid, but not
all. In this case the plaintext might be encrypted for all valid recipients and returned
in cipher (if this happens depends on the crypto engine). More information about
the invalid recipients is available with gpgme_op_encrypt_result.

If recp is NULL, symmetric rather than public key encryption is performed. Symmetri-
cally encrypted cipher text can be deciphered with gpgme_op_decrypt. Note that in
this case the crypto backend needs to retrieve a passphrase from the user. Symmetric
encryption is currently only supported for the OpenPGP crypto backend.

The function returns the error code GPG_ERR_NO_ERROR if the ciphertext could be
created successfully, GPG_ERR_INV_VALUE if ctx, recp, plain or cipher is not a valid
pointer, GPG_ERR_UNUSABLE_PUBKEY if recp contains some invalid recipients, GPG_
ERR_BAD_PASSPHRASE if the passphrase for the symmetric key could not be retrieved,
and passes through any errors that are reported by the crypto engine support routines.

gpgme_error_t gpgme_op_encrypt_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl|, gpgme_encrypt_flags_t flags, gpgme_data_t plain,
gpgme_data_t cipher)
The function gpgme_op_encrypt_start initiates a gpgme_op_encrypt operation. It
can be completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting
For Completion|, page 103.

References to the keys only need to be held for the duration of this call. The user
can release its references to the keys after this function returns, even if the operation
is not yet finished.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, GPG_ERR_INV_VALUE if ctx, rset, plain or cipher is not a valid
pointer, and GPG_ERR_UNUSABLE_PUBKEY if rset does not contain any valid recipients.

gpgme_error_t gpgme_op_encrypt_ext (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl], const char *recpstring, gpgme_encrypt_flags_t flags,
gpgme_data_t plain, gpgme_data_t cipher)
SINCE: 1.11.0

This is an extended version of gpgme_op_encrypt with recpstring as additional pa-
rameter. If recp is NULL and recpstring is not NULL, the latter is expected to be
a linefeed delimited string with the set of key specifications. In contrast to recp the
keys are given directly as strings and there is no need to first create key objects.
Leading and trailing white space is remove from each line in recpstring. The keys are
then passed verbatim to the backend engine.

Chapter 7: Contexts 96

For the OpenPGP backend several special keywords are supported to modify the
operation. These keywords are given instead of a key specification. The currently
supported keywords are:

--hidden

-—-no-hidden
These keywords toggle between normal and hidden recipients for all fol-
lowing key specifications. When a hidden recipient is requested the gpg
option ‘-R’ (or ‘-F’ in file mode) is used instead of ‘-r’ (‘~f’ in file mode).

--file

--no-file
These keywords toggle between regular and file mode for all following
key specification. In file mode the option ‘-f’ or ‘-F’ is passed to gpg.
At least GnuPG version 2.1.14 is required to handle these options. The
GPGME_ENCRYPT_WANT_ADDRESS flag is ignored in file mode.

- This keyword disables all keyword detection up to the end of the string.
All keywords are treated as verbatim arguments.

To create a recpstring it is often useful to employ a strconcat style function. For
example this function creates a string to encrypt to two keys:

char *
xbuild_recpstring (const char *keyl, const char *key2)
{
char *result = gpgrt_strconcat ("--\n", keyl, "\n", key2, NULL);
if (!result)
{ perror ("strconcat failed"); exit (2); }
return result;

¥

Note the use of the double dash here; unless you want to specify a keyword, it is
a good idea to avoid any possible trouble with key specifications starting with a
double dash. The used strconcat function is available in Libgpg-error 1.28 and later;
Libgpg-error (aka Gpgrt) is a dependency of GPGME. The number of arguments to
gpgrt_strconcat is limited to 47 but that should always be sufficient. In case a
larger and non-fixed number of keys are to be supplied the following code can be
used:

char *
xbuild_long_recpstring (void)
{

gpgrt_stream_t memfp;

const char *s;

void *result;

memfp = gpgrt_fopenmem (0, "w+b");
if (!memfp)

{ perror ("fopenmem failed"); exit (2); }
gpgrt_fputs ("--", memfp);

Chapter 7: Contexts 97

while ((s = get_next_keyspec ()))
{
gpgrt_fputc (’\n’, memfp);
gpgrt_fputs (s, memfp);
}
gpgrt_fputc (0, memfp);
if (gpgrt_ferror (memfp))
{ perror ("writing to memstream failed"); exit (2); }
if (gpgrt_fclose_snatch (memfp, &result, NULL))
{ perror ("fclose_snatch failed"); exit (2); }
return result;

}

In this example get_next_keyspec is expected to return the next key to be added
to the string. Please take care: Encrypting to a large number of recipients is often
questionable due to security reasons and also for the technicality that all keys are
currently passed on the command line to gpg which has as a platform specific length
limitation.

gpgme_error_t gpgme_op_encrypt_ext_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl|, const char *recpstring, gpgme_encrypt_flags_t flags,
gpgme_data_t plain, gpgme_data_t cipher)
SINCE: 1.11.0

This is an extended version of gpgme_op_encrypt_start with recpstring as additional
parameter. If recp is NULL and recpstring is not NULL, the latter is expected to be
a linefeed delimited string with the set of key specifications. In contrast to recp the
keys are given directly as strings and there is no need to first create key objects. The
keys are passed verbatim to the backend engine.

gpgme_encrypt_result_t [Data type]
This is a pointer to a structure used to store the result of a gpgme_op_encrypt op-
eration. After successfully encrypting data, you can retrieve the pointer to the result
with gpgme_op_encrypt_result. The structure contains the following members:

gpgme_invalid_key_t invalid_recipients
A linked list with information about all invalid keys for which the data
could not be encrypted.

gpgme_encrypt_result_t gpgme_op_encrypt_result [Function]
(gpgme_ctx_t ctx)

The function gpgme_op_encrypt_result returns a gpgme_encrypt_result_t
pointer to a structure holding the result of a gpgme_op_encrypt operation. The
pointer is only valid if the last operation on the context was a gpgme_op_encrypt,
gpgme_op_encrypt_start, gpgme_op_sign or gpgme_op_sign_start operation. If
this operation failed, this might be a NULL pointer. The returned pointer is only
valid until the next operation is started on the context.

Chapter 7: Contexts 98

gpgme_error_t gpgme_op_encrypt_sign (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl|, gpgme_encrypt_flags_t flags, gpgme_data_t plain,
gpgme_data_t cipher)
The function gpgme_op_encrypt_sign does a combined encrypt and sign operation.
It is used like gpgme_op_encrypt, but the ciphertext also contains signatures for the
signers listed in ctx.

The combined encrypt and sign operation is currently only available for the OpenPGP
crypto engine.

gpgme_error_t gpgme_op_encrypt_sign_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl], gpgme_encrypt_flags_t flags, gpgme_data_t plain,
gpgme_data_t cipher)
The function gpgme_op_encrypt_sign_start initiates a gpgme_op_encrypt_sign
operation. It can be completed by calling gpgme_wait on the context. See
Section 7.8.1 [Waiting For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation could be
started successfully, and GPG_ERR_INV_VALUE if ctx, rset, plain or cipher is not a
valid pointer.

gpgme_error_t gpgme_op_encrypt_sign_ext (gpgme_ctx_t ctx, [Function]
gpgme_key_t recpl|, const char *recpstring, gpgme_encrypt_flags_t flags,
gpgme_data_t plain, gpgme_data_t cipher)
SINCE: 1.11.0

This is an extended version of gpgme_op_encrypt_sign with recpstring as additional
parameter. If recp is NULL and recpstring is not NULL, the latter is expected to be
a linefeed delimited string with the set of key specifications. In contrast to recp the
keys are given directly as strings and there is no need to first create the key objects.
The keys are passed verbatim to the backend engine.

gpgme_error_t gpgme_op_encrypt_sign_ext_start [Function]
(gpgme_ctx_t ctx, gpgme_key_t recp||, const char *recpstring,
gpgme_encrypt_flags_t flags, gpgme_data_t plain, gpgme_data_t cipher)
SINCE: 1.11.0

This is an extended version of gpgme_op_encrypt_sign_start with recpstring as
additional parameter. If recp is NULL and recpstring is not NULL, the latter is
expected to be a linefeed delimited string with the set of key specifications. In contrast
to recp the keys are given directly as strings and there is no need to first create the
key objects. The keys are passed verbatim to the backend engine.

7.6.6 Random

GPGME provides a simple interface to get cryptographic strong random numbers from
Libgerypt via the GPG engine.

7.6.6.1 How to get random bytes

enum gpgme_random_mode_t [Data type]
This enum ist used to select special modes of the random generator.

Chapter 7: Contexts 99

GPGME_RANDOM_MODE_NORMAL
This is the standard mode, you may also use 0 instead of this enum value.

GPGME_RANDOM_MODE_ZBASE32
This mode is used to tell the random function to return a 30 character
string with random characters from the zBase32 set of characters. The
returned string will be terminated by a Nul.

gpgme_error_t gpgme_op_random_bytes (gpgme_ctx_t ctx, [Function]
gpgme_random_mode_t mode, char *buffer, size_t bufsize)

SINCE: 2.0.0
The function gpgme_op_random_bytes returns random bytes. buffer must be pro-
vided by the caller with a size of BUFSIZE and will on return be filled with random
bytes retrieved from gpg. However, if mode is GPGME_RANDOM_MODE_ZBASE32 bufsize
needs to be at least 31 and will be filled with a string of 30 ASCII characters followed
by a Nul; the remainder of the buffer is not changed. The caller must provide a con-
text ctx initialized for GPGME_PROTOCOL_OPENPGP. This function has a limit
of 1024 bytes to avoid accidental overuse of the random generator

gpgme_error_t gpgme_op_random_values (gpgme_ctx_t ctx, [Function]
size_t 1imit, size_t *retval)
SINCE: 2.0.0

The function gpgme_op_random_value returns an unbiased random value in the
range 0 <= value < limit. The value is returned at retval if and only if the func-

tion returns with success. The caller must also provide a context ctx initialized for
GPGME_PROTOCOL_OPENPGP.

7.7 Miscellaneous operations

Here are some support functions which are sometimes useful.

7.7.1 Running other Programs

GPGME features an internal subsystem to run the actual backend engines. Along with
data abstraction object this subsystem can be used to run arbitrary simple programs which
even need not be related to cryptographic features. It may for example be used to run tools
which are part of the GnuPG system but are not directly accessible with the GPGME API.

gpgme_error_t gpgme_op_spawn (gpgme_ctx_t ctx, const char *file, [Function]
const char *argv||, gpgme_data_t datain, gpgme_data_t dataout,
gpgme_data_t dataerr, unsigned int flags)
SINCE: 1.5.0

The function gpgme_op_spawn runs the program file with the arguments taken from
the NULL terminated array argv. If no arguments are required argv may be given as
NULL. In the latter case or if argv[0] is the empty string, GPGME uses the basename
of file for argv[0]. The file descriptors stdin, stdout, and stderr are connected
to the data objects datain, dataout, and dataerr. If NULL is passed for one of these
data objects the corresponding file descriptor is connected to ‘/dev/null’.

The value in flags is a bitwise-or combination of one or multiple of the following bit
values:

Chapter 7: Contexts 100

GPGME_SPAWN_DETACHED
SINCE: 1.5.0

Under Windows this flag inhibits the allocation of a new console for the
program. This is useful for a GUI application which needs to call a
command line helper tool.

GPGME_SPAWN_ALLOW_SET_FG

SINCE: 1.5.0
Under Windows this flag allows the called program to put itself into the
foreground.

gpgme_error_t gpgme_op_spawn_start (gpgme_ctx_t ctx, [Function]

const char *file, const char *argv|], gpgme_data_t datain,
gpgme_data_t dataout, gpgme_data_t dataerr, unsigned int flags)
SINCE: 1.5.0

This is the asynchronous variant of gpgme_op_spawn.

7.7.2 Using the Assuan protocol

The Assuan protocol can be used to talk to arbitrary Assuan servers. By default it is
connected to the GnuPG agent, but it may be connected to arbitrary servers by using gpgme _
ctx_set_engine_info, passing the location of the servers socket as file_name argument,
and an empty string as home_dir argument.

The Assuan protocol functions use three kinds of callbacks to transfer data:

gpgme_error_t (*gpgme_assuan_data_cb_t) (void *opaque, [Data type]
const void *data, size_t datalen)
SINCE: 1.2.0

This callback receives any data sent by the server. opaque is the pointer passed to
gpgme_op_assuan_transact_start, data of length datalen refers to the data sent.

gpgme_error_t (*kgpgme_assuan_inquire_cb_t) [Data type]
(void *opaque, const char *name, const char *args,
gpgme_data_t *r_data)
SINCE: 1.2.0

This callback is used to provide additional data to the Assuan server. opaque is the
pointer passed to gpgme_op_assuan_transact_start, name and args specify what
kind of data the server requested, and r_data is used to return the actual data.

Note: Returning data is currently not implemented in GPGME.

gpgme_error_t (*kgpgme_assuan_status_cb_t) (void *opaque, [Data type]
const char *status, const char *args)
SINCE: 1.2.0

This callback receives any status lines sent by the server. opaque is the pointer passed
to gpgme_op_assuan_transact_start, status and args denote the status update
sent.

Chapter 7: Contexts 101

gpgme_error_t gpgme_op_assuan_transact_start [Function]
(gpgme_ctx_t ctx, const char *command, gpgme_assuan_data_cb_t data_cb,
void * data_cb_value, gpgme_assuan_inquire_cb_t inquire_cb,
void * inquire_cb_value, gpgme_assuan_status-cb_t status_cb,
void * status_cb_value)
SINCE: 1.2.0

Send the Assuan command and return results via the callbacks. Any callback may
be NULL. The result of the operation may be retrieved using gpgme_wait_ext.

Asynchronous variant.

gpgme_error_t gpgme_op_assuan_transact_ext (gpgme_ctx_t ctx, [Function]
const char *command, gpgme_assuan_data_cb_t data_cb,
void * data_cb_value, gpgme_assuan_inquire_cb_t inquire_cb,
void * inquire_cb_value, gpgme_assuan_status_cb_t status_cb,
void * status_cb_value, gpgme_error-t *op_err)
Send the Assuan command and return results via the callbacks. The result of the
operation is returned in op_err.

Synchronous variant.

7.7.3 How to check for software updates

The GnuPG Project operates a server to query the current versions of software packages
related to GnuPG. GPGME can be used to access this online database and check whether
a new version of a software package is available.

gpgme_query_swdb_result_t [Data type]
SINCE: 1.8.0

This is a pointer to a structure used to store the result of a gpgme_op_query_swdb
operation. After success full call to that function, you can retrieve the pointer to
the result with gpgme_op_query_swdb_result. The structure contains the following
member:

name This is the name of the package.

iversion The currently installed version or an empty string. This value is either
a copy of the argument given to gpgme_op_query_swdb or the version of
the installed software as figured out by GPGME or GnuPG.

created This gives the date the file with the list of version numbers has originally
be created by the GnuPG project.

retrieved
This gives the date the file was downloaded.

warning If this flag is set either an error has occurred or some of the information
in this structure are not properly set. For example if the version number
of the installed software could not be figured out, the update flag may
not reflect a required update status.

update If this flag is set an update of the software is available.

urgent If this flag is set an available update is important.

Chapter 7: Contexts 102

noinfo If this flag is set, no valid information could be retrieved.
unknown If this flag is set the given name is not known.

tooold If this flag is set the available information is not fresh enough.
error If this flag is set some other error has occurred.

version The version string of the latest released version.

reldate The release date of the latest released version.

gpgme_error_t gpgme_op_query_swdb (gpgme_ctx_t ctx, [Function]
const char *name, const char *iversion, gpgme_data_t reserved)
SINCE: 1.8.0

Query the software version database for software package name and check against the
installed version given by iversion. If iversion is given as NULL a check is only done
if GPGME can figure out the version by itself (for example when using "gpgme" or
"gnupg"). If NULL is used for name the current gpgme version is checked. reserved
must be set to 0.

gpgme_query_swdb_result_t gpgme_op_query_swdb_result [Function]
(gpgme_ctx_t ctx)
SINCE: 1.8.0

The function gpgme_op_query_swdb_result returns a gpgme_query_swdb_result_t
pointer to a structure holding the result of a gpgme_op_query_swdb operation. The
pointer is only valid if the last operation on the context was a successful call to gpgme_
op_query_swdb. If that call failed, the result might be a NULL pointer. The returned
pointer is only valid until the next operation is started on the context ctx.

Here is an example on how to check whether GnuPG is current:

#include <gpgme.h>

int

main (void)

{
gpg_error_t err;
gpgme_ctx_t ctx;
gpgme_query_swdb_result_t result;

gpgme_check_version (NULL);
err = gpgme_new (&ctx);
if (err)
fprintf (stderr, "error creating context: %s\n", gpg_strerror (err));ll
else
{
gpgme_set_protocol (ctx, GPGME_PROTOCOL_GPGCONF) ;

err = gpgme_op_query_swdb (ctx, "gnupg", NULL, 0);
if (err)

Chapter 7: Contexts 103

fprintf (stderr, "error querying swdb: %s\n", gpg_strerror (err));ll
else
{
result = gpgme_op_query_swdb_result (ctx);
if (!result)
fprintf (stderr, "error querying swdb\n");
if (!result->warning && !result->update)
printf ("GnuPG version %s is current\n",
result->iversion);
else if (!result->warning && result->update)
printf ("GnuPG version %s can be updated to %s\n",
result->iversion, result->version);
else
fprintf (stderr, "error finding the update status\n");
}
gpgme_release (ctx);
}

return O;

7.8 Run Control

GPGME supports running operations synchronously and asynchronously. You can use asyn-
chronous operation to set up a context up to initiating the desired operation, but delay
performing it to a later point.

Furthermore, you can use an external event loop to control exactly when GPGME runs.
This ensures that GPGME only runs when necessary and also prevents it from blocking for
a long time.

7.8.1 Waiting For Completion

gpgme_ctx_t gpgme_wait (gpgme_ctx_t ctx, gpgme_error_t *status, [Function]
int hang)
The function gpgme_wait continues the pending operation within the context ctx. In
particular, it ensures the data exchange between GPGME and the crypto backend and
watches over the run time status of the backend process.

If hang is true, the function does not return until the operation is completed or
cancelled. Otherwise the function will not block for a long time.

The error status of the finished operation is returned in status if gpgme_wait does
not return NULL.

The ctx argument can be NULL. In that case, gpgme_wait waits for any context to
complete its operation.

gpgme_wait can be used only in conjunction with any context that has a pending
operation initiated with one of the gpgme_op_*_start functions except gpgme_op_
keylist_start and gpgme_op_trustlist_start (for which you should use the corre-
sponding gpgme_op_*_next functions). If ctx is NULL, all of such contexts are waited

Chapter 7: Contexts 104

upon and possibly returned. Synchronous operations running in parallel, as well as
key and trust item list operations, do not affect gpgme_wait.

In a multi-threaded environment, only one thread should ever call gpgme_wait at
any time, regardless of whether ctx is specified or not. This means that all calls to
this function should be fully synchronized by locking primitives. It is safe to start
asynchronous operations while a thread is running in gpgme_wait.

The function returns the ctx of the context which has finished the operation. If hang
is false, and the timeout expires, NULL is returned and *status will be set to 0. If an
error occurs, NULL is returned and the error is returned in *status.

7.8.2 Using External Event Loops

GPGME hides the complexity of the communication between the library and the crypto
engine. The price of this convenience is that the calling thread can block arbitrary long
waiting for the data returned by the crypto engine. In single-threaded programs, in partic-
ular if they are interactive, this is an unwanted side-effect. OTOH, if gpgme_wait is used
without the hang option being enabled, it might be called unnecessarily often, wasting CPU
time that could be used otherwise.

The I/O callback interface described in this section lets the user take control over what
happens when. GPGME will provide the user with the file descriptors that should be
monitored, and the callback functions that should be invoked when a file descriptor is ready
for reading or writing. It is then the user’s responsibility to decide when to check the file
descriptors and when to invoke the callback functions. Usually this is done in an event
loop, that also checks for events in other parts of the program. If the callback functions
are only called when the file descriptors are ready, GPGME will never block. This gives the
user more control over the program flow, and allows to perform other tasks when GPGME
would block otherwise.

By using this advanced mechanism, GPGME can be integrated smoothly into GUI toolk-
its like GTK+ even for single-threaded programs.

7.8.2.1 I/O Callback Interface

gpgme_error_t (*gpgme_io_cb_t) (void *data, int fd) [Data type]
The gpgme_io_cb_t type is the type of functions which GPGME wants to register as
I/0O callback handlers using the gpgme_register_io_cb_t functions provided by the
user.

data and fd are provided by GPGME when the I/O callback handler is registered, and
should be passed through to the handler when it is invoked by the user because it
noticed activity on the file descriptor fd.

The callback handler always returns 0, but you should consider the return value to
be reserved for later use.

gpgme_error_t (*kgpgme_register_io_cb_t) (void *data, [Data type]
int fd, int dir, gpgme_io_cb_t fnc, void *fnc_data,
void **tag)
The gpgme_register_io_cb_t type is the type of functions which can be called by
GPGME to register an I/O callback function fnc for the file descriptor fd with the

Chapter 7: Contexts 105

user. fnc_data should be passed as the first argument to fnc when the handler is
invoked (the second argument should be fd). If dir is 0, fnc should be called by the
user when fd is ready for writing. If dir is 1, fnc should be called when fd is ready
for reading.

data was provided by the user when registering the gpgme_register_io_cb_t func-
tion with GPGME and will always be passed as the first argument when registering a
callback function. For example, the user can use this to determine the event loop to
which the file descriptor should be added.

GPGME will call this function when a crypto operation is initiated in a context for
which the user has registered 1/O callback handler functions with gpgme_set_io_cbs.
It can also call this function when it is in an I/O callback handler for a file descriptor
associated to this context.

The user should return a unique handle in tag identifying this I/O callback reg-
istration, which will be passed to the gpgme_register_io_cb_t function without
interpretation when the file descriptor should not be monitored anymore.

void (*gpgme_remove_io_cb_t) (void *tag) [Data type]
The gpgme_remove_io_cb_t type is the type of functions which can be called by
GPGME to remove an I/O callback handler that was registered before. tag is the
handle that was returned by the gpgme_register_io_cb_t for this I/O callback.

GPGME can call this function when a crypto operation is in an I/O callback. It will
also call this function when the context is destroyed while an operation is pending.

enum gpgme_event_io_t [Data type]
The gpgme_event_io_t type specifies the type of an event that is reported to the user
by GPGME as a consequence of an I/O operation. The following events are defined:

GPGME_EVENT_START
The operation is fully initialized now, and you can start to run the reg-
istered I/O callback handlers now. Note that registered I/O callback
handlers must not be run before this event is signalled. type_data is NULL
and reserved for later use.

GPGME_EVENT_DONE
The operation is finished, the last I/O callback for this operation was
removed. The accompanying type_data points to a struct gpgme_io_
event_done_data variable that contains the status of the operation that
finished. This event is signalled after the last I/O callback has been
removed.

GPGME_EVENT_NEXT_KEY
In a gpgme_op_keylist_start operation, the next key was received from
the crypto engine. The accompanying type_data is a gpgme_key_t vari-
able that contains the key with one reference for the user.

void (*gpgme_event_io_cb_t) (void *data, [Data type]
gpgme_event_io_t type, void *type_data)
The gpgme_event_io_cb_t type is the type of functions which can be called by
GPGME to signal an event for an operation running in a context which has I/O
callback functions registered by the user.

Chapter 7: Contexts 106

data was provided by the user when registering the gpgme_event_io_cb_t function
with GPGME and will always be passed as the first argument when registering a
callback function. For example, the user can use this to determine the context in
which this event has occurred.

type will specify the type of event that has occurred. type_data specifies the event
further, as described in the above list of possible gpgme_event_io_t types.

GPGME can call this function in an I/O callback handler.
7.8.2.2 Registering I/O Callbacks

struct gpgme_io_cbs [Data type]
This structure is used to store the I/O callback interface functions described in the
previous section. It has the following members:

gpgme_register_io_cb_t add
This is the function called by GPGME to register an I/O callback handler.
It must be specified.

void *add_priv
This is passed as the first argument to the add function when it is called
by GPGME. For example, it can be used to determine the event loop to
which the file descriptor should be added.

gpgme_remove_io_cb_t remove
This is the function called by GPGME to remove an I/O callback handler.
It must be specified.

gpgme_event_io_cb_t event
This is the function called by GPGME to signal an event for an operation.
It must be specified, because at least the start event must be processed.

void *event_priv
This is passed as the first argument to the event function when it is
called by GPGME. For example, it can be used to determine the context
in which the event has occurred.

void gpgme_set_io_cbs (gpgme_ctx_t ctx, [Function]
struct gpgme_io_cbs *io_cbs)
The function gpgme_set_io_cbs enables the I/O callback interface for the context
ctx. The I/O callback functions are specified by io_cbs.

If io_cbs->add is NULL, the I/O callback interface is disabled for the context, and
normal operation is restored.

void gpgme_get_io_cbs (gpgme_ctx_t ctx, [Function]
struct gpgme_io_cbs *io_cbs)
The function gpgme_get_io_cbs returns the I/O callback functions set with gpgme_
set_io_cbs in io_cbs.

Chapter 7: Contexts 107

7.8.2.3 1/0O Callback Example

To actually use an external event loop, you have to implement the I/O callback functions
that are used by GPGME to register and unregister file descriptors. Furthermore, you have
to actually monitor these file descriptors for activity and call the appropriate I/O callbacks.

The following example illustrates how to do that. The example uses locking to show
in which way the callbacks and the event loop can run concurrently. For the event loop,
we use a fixed array. For a real-world implementation, you should use a dynamically sized
structure because the number of file descriptors needed for a crypto operation in GPGME
is not predictable.

#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <pthread.h>
#include <sys/types.h>
#include <gpgme.h>

/* The following structure holds the result of a crypto operation. */
struct op_result
{

int done;

gpgme_error_t err;

};

/* The following structure holds the data associated with one I/0
callback. */
struct one_fd
{
int f4;
int dir;
gpgme_io_cb_t fnc;
void *fnc_data;
void *loop;

};

struct event_loop

{
pthread_mutex_t lock;

#define MAX_FDS 32
/* Unused slots are marked with FD being -1. */
struct one_fd fds[MAX_FDS];

s

The following functions implement the I/O callback interface.

gpgme_error_t
add_io_cb (void *data, int fd, int dir, gpgme_io_cb_t fnc, void *fnc_data,]]
void **r_tag)

{

Chapter 7: Contexts 108

struct event_loop *loop = data;
struct one_fd *fds = loop->fds;
int 1i;

pthread_mutex_lock (&loop->lock);
for (i = 0; i < MAX_FDS; i++)
{
if (fds[i].fd == -1)

fds[i] .fd = fd;

fds[i].dir = dir;

fds[i] .fnc = fnc;

fds[i] .fnc_data = fnc_data;
fds[i].loop = loop;

break;

}
pthread_mutex_unlock (&loop->lock);
if (i == MAX_FDS)

return gpg_error (GPG_ERR_GENERAL);
*xr_tag = &fds[i];
return O;

void
remove_io_cb (void *tag)
{
struct one_fd *fd = tag;
struct event_loop *loop = fd->loop;

pthread_mutex_lock (&loop->lock);

fd->fd = -1;
pthread_mutex_unlock (&loop->lock);
}
void
event_io_cb (void *data, gpgme_event_io_t type, void *type_data)
{

struct op_result *result = data;

/* We don’t support list operations here. */
if (type == GPGME_EVENT_DONE)
{
result->done = 1;
result->err = *type_data;

}

Chapter 7: Contexts 109

The final missing piece is the event loop, which will be presented next. We only support
waiting for the success of a single operation.

int
do_select (struct event_loop *1loop)

{

fd_set rfds;

fd_set wfds;

int i, n;

int any = 0;

struct timeval tv;

struct one_fd *fdlist = loop->fds;

pthread_mutex_lock (&loop->lock);
FD_ZERO (&rfds);
FD_ZERO (&wfds);
for (i = 0; i < MAX_FDS; i++)
if (fdlist[i].fd != -1)
FD_SET (fdlist[i].fd, fdlist[i].dir ? &rfds : &wfds);
pthread_mutex_unlock (&loop->lock);

tv.tv_sec = 0;
tv.tv_usec = 1000;

do
{
n = select (FD_SETSIZE, &rfds, &wfds, NULL, &tv);
}
while (n < 0 && errno == EINTR);

if (n < 0)
return n; /* Error or timeout. */

pthread_mutex_lock (&loop->lock);
for (i = 0; i < MAX_FDS && n; i++)
{
if (fdlist[i].fd != -1)

if (FD_ISSET (fdlist[i].fd, fdlist[i].dir ? &rfds : &wfds))
{

assert (n);

n-—j;

any = 1;
/* The I/0 callback handler can register/remove callbacks,

so we have to unlock the file descriptor list. x*/

pthread_mutex_unlock (&loop->lock);

(xfdlist[i] .fnc) (fdlist[i].fnc_data, fdlist[i].fd);

Chapter 7: Contexts 110

pthread_mutex_lock (&loop->lock);
}

X
pthread_mutex_unlock (&loop->lock);
return any;

}
void
wait_for_op (struct event_loop *loop, struct op_result *result)
{
int ret;
do
{
ret = do_select (loop);
}
while (ret >= 0 && !result->done);
}
The main function shows how to put it all together.
int
main (int argc, char *argv[])
{

struct event_loop loop;
struct op_result result;
gpgme_ctx_t ctx;
gpgme_error_t err;
gpgme_data_t sig, text;
int i;
pthread_mutexattr_t attr;
struct gpgme_io_cbs io_cbs =
{

add_io_cb,

&loop,

remove_io_cb,

event_io_cb,

&result
3

init_gpgme ();
/* Initialize the loop structure. */
/* The mutex must be recursive, since remove_io_cb (which acquires a

lock) can be called while holding a lock acquired in do_select. *x/
pthread_mutexattr_init (&attr);

Chapter 7: Contexts 111

pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init (&loop.lock, &attr);
pthread_mutexattr_destroy (&attr);

for (i = 0; i < MAX_FDS; i++)
loop.fds[i].fd = -1;

/* Initialize the result structure. x*/
result.done = 0;

err = gpgme_data_new_from_file (&sig, "signature", 1);

if (lerr)

err = gpgme_data_new_from_file (&text, "text", 1);
if (lerr)

err = gpgme_new (&ctx);
if (lerr)

{

gpgme_set_io_cbs (ctx, &io_cbs);
err = gpgme_op_verify_start (ctx, sig, text, NULL);
}
if (err)
{
fprintf (stderr, "gpgme error: %s: %s\n",
gpgme_strsource (err), gpgme_strerror (err));
exit (1);
}

wait_for_op (&loop, &result);
if ('result.done)
{
fprintf (stderr, "select error\n");
exit (1);
}
if ('result.err)
{
fprintf (stderr, "verification failed: %s: %s\n",
gpgme_strsource (result.err), gpgme_strerror (result.err));]]
exit (1);
}

/* Evaluate verify result. x*/

return O;

Chapter 7: Contexts 112

7.8.2.4 1/0O Callback Example GTK+

The I/O callback interface can be used to integrate GPGME with the GTK+ event loop.
The following code snippets shows how this can be done using the appropriate register and
remove /O callback functions. In this example, the private data of the register I/O callback
function is unused. The event notifications is missing because it does not require any GTK+
specific setup.

#include <gtk/gtk.h>

struct my_gpgme_io_cb

{
gpgme_io_cb_t fnc;
void *fnc_data;
guint input_handler_id
s
void
my_gpgme_io_cb (gpointer data, gint source, GdkInputCondition condition)
{
struct my_gpgme_io_cb *iocb = data;
(*(iocb->fnc)) (iocb->data, source);
}
void
my_gpgme_remove_io_cb (void *data)
{
struct my_gpgme_io_cb *iocb = data;
gtk_input_remove (data->input_handler_id);
}
void

my_gpgme_register_io_callback (void *data, int fd, int dir, gpgme_io_cb_t fnc,|j
void *fnc_data, void **tag)
{
struct my_gpgme_io_cb *iocb = g_malloc (sizeof (struct my_gpgme_io_cb));l}
iocb->fnc = fnc;
iocb->data = fnc_data;
iocb->input_handler_id = gtk_input_add_full (fd, dir
? GDK_INPUT_READ
: GDK_INPUT_WRITE,
my_gpgme_io_callback,
0, iocb, NULL);
*tag = iocb;
return O;

Chapter 7: Contexts 113

7.8.2.5 I/0O Callback Example GDK

The I/0O callback interface can also be used to integrate GPGME with the GDK event loop.
The following code snippets shows how this can be done using the appropriate register and
remove /O callback functions. In this example, the private data of the register I/O callback
function is unused. The event notifications is missing because it does not require any GDK
specific setup.

It is very similar to the GTK+ example in the previous section.

#include <gdk/gdk.h>

struct my_gpgme_io_cb

{
gpgme_io_cb_t fnc;
void *fnc_data;
gint tag;
s
void
my_gpgme_io_cb (gpointer data, gint source, GdkInputCondition condition)
{
struct my_gpgme_io_cb *iocb = data;
(x(iocb->fnc)) (iocb->data, source);
b
void
my_gpgme_remove_io_cb (void *data)
{
struct my_gpgme_io_cb *iocb = data;
gdk_input_remove (data->tag);
¥
void

my_gpgme_register_io_callback (void *data, int fd, int dir, gpgme_io_cb_t fnc,|}
void *fnc_data, void **tag)

{
struct my_gpgme_io_cb *iocb = g_malloc (sizeof (struct my_gpgme_io_cb));l}
iocb->fnc = fnc;
iocb->data = fnc_data;
iocb->tag = gtk_input_add_full (fd, dir 7 GDK_INPUT_READ : GDK_INPUT_WRITE,]]
my_gpgme_io_callback, iocb, NULL);
*tag = iocb;
return O;
}

7.8.2.6 1/0 Callback Example Qt

The I/0O callback interface can also be used to integrate GPGME with the Qt event loop.
The following code snippets show how this can be done using the appropriate register and

Chapter 7: Contexts 114

remove /O callback functions. In this example, the private data of the register I/O callback
function is unused. The event notifications is missing because it does not require any Qt
specific setup.

#include <gsocketnotifier.h>
#include <qgapplication.h>

struct IOCB {
I0CB(GpgmeIOCb f, void * d, QSocketNotifier * n)
: func(£), data(d), notifier(n) {}
GpgmeIOCb func;
void * data;
QSocketNotifier * notifier;

}
class MyApp : public QApplication {
/] ...

static void registerGpgmeIOCallback(void * data, int fd, int dir,

GpgmeIOCb func, void * func_data,
void ** tag) {

QSocketNotifier * n =

new QSocketNotifier(fd, dir ? QSocketNotifier::Read
: QSocketNotifier::Write);
connect(n, SIGNAL(activated(int)),
gApp, SLOT(slotGpgmeIOCallback(int)));
gApp->mI0CBs.push_back(IOCB(func, func_data, n));
tag = (void)n;

}

static void removeGpgmeIOCallback(void * tag) {
if (!'tag) return;
QSocketNotifier * n = static_cast<QSocketNotifier*>(tag);
for (QValueList<IOCB>::iterator it = qApp—>mIOCBs.begin() ;
it != qApp->mIOCBs.end() ; ++it)
if (it->notifier == n) {

delete it->notifier;

gqApp->mIOCBs.erase(it);

return;

}

public slots:
void slotGpgmeIOCallback(int fd) {
for (QValueList<IOCB>::const_iterator it = mIOCBs.begin() ;
it != mIOCBs.end() ; ++it)

Chapter 7: Contexts 115

if (it->notifier && it->notifier->socket() == fd)
(x(it->func)) (it->func_data, fd);
}
// ...
private:
QValueList<IOCB> mIOCBs;

// ...
};

7.8.3 Cancellation

Sometimes you do not want to wait for an operation to finish. GPGME provides two different
functions to achieve that. The function gpgme_cancel takes effect immediately. When it
returns, the operation is effectively canceled. However, it has some limitations and can
not be used with synchronous operations. In contrast, the function gpgme_cancel_async
can be used with any context and from any thread, but it is not guaranteed to take effect
immediately. Instead, cancellation occurs at the next possible time (typically the next time
I/O occurs in the target context).

gpgme_ctx_t gpgme_cancel (gpgme_ctx_t ctx) [Function]
SINCE: 0.4.5

The function gpgme_cancel attempts to cancel a pending operation in the context
ctx. This only works if you use the global event loop or your own event loop.

If you use the global event loop, you must not call gpgme_wait during cancellation.
After successful cancellation, you can call gpgme_wait (optionally waiting on ctx),
and the context ctx will appear as if it had finished with the error code GPG_ERR_
CANCEL.

If you use an external event loop, you must ensure that no I/O callbacks are invoked
for this context (for example by halting the event loop). On successful cancellation,
all registered 1/0 callbacks for this context will be unregistered, and a GPGME_EVENT _
DONE event with the error code GPG_ERR_CANCEL will be signalled.

The function returns an error code if the cancellation failed (in this case the state of
ctx is not modified).

gpgme_ctx_t gpgme_cancel_async (gpgme_ctx_t ctx) [Function]
SINCE: 1.1.7

The function gpgme_cancel_async attempts to cancel a pending operation in the
context ctx. This can be called by any thread at any time after starting an operation
on the context, but will not take effect immediately. The actual cancellation happens
at the next time GPGME processes I/O in that context.

The function returns an error code if the cancellation failed (in this case the state of
ctx is not modified).

Appendix A: The GnuPG UI Server Protocol 116

Appendix A The GnuPG UI Server Protocol

This section specifies the protocol used between clients and a User Interface Server (Ul
server). This protocol helps to build a system where all cryptographic operations are done
by a server and the server is responsible for all dialogs. Although GPGME has no direct
support for this protocol it is believed that servers will utilize the GPGME library; thus
having the specification included in this manual is an appropriate choice. This protocol
should be referenced as ‘The GnuPG UI Server Protocol’.

A server needs to implement these commands:!

A.1 UI Server: Encrypt a Message

Before encryption can be done the recipients must be set using the command:

RECIPIENT string [Command]
Set the recipient for the encryption. string is an RFC-2822 recipient name ("mailbox"
as per section 3.4). This command may or may not check the recipient for validity
right away; if it does not all recipients are expected to be checked at the time of
the ENCRYPT command. All RECIPIENT commands are cumulative until a successful
ENCRYPT command or until a RESET command. Linefeeds are obviously not allowed
in string and should be folded into spaces (which are equivalent).

To tell the server the source and destination of the data, the next two commands are to be
used:

INPUT FD=n [Command]|
Set the file descriptor for the message to be encrypted to n. The message send to the
server is binary encoded.

GpgOL is a Windows only program, thus n is not a libc file descriptor but a regular
system handle. Given that the Assuan connection works over a socket, it is not
possible to use regular inheritance to make the file descriptor available to the server.
Thus DuplicateHandle needs to be used to duplicate a handle to the server process.
This is the reason that the server needs to implement the GETINFO pid command.
Sending this command a second time replaces the file descriptor set by the last one.

OUTPUT FD=n [-binary] [Command]
Set the file descriptor to be used for the output (i.e. the encrypted message) to n. If
the option --binary is given the output shall be in binary format; if not given, the
output for OpenPGP needs to be ASCII armored and for CMS Base-64 encoded. For
details on the file descriptor, see the INPUT command.

The setting of the recipients, the data source and destination may happen in any order,
even intermixed. If this has been done the actual encryption operation is called using:

! In all examples we assume that the connection has already been established; see the Assuan manual for
details.

Appendix A: The GnuPG UI Server Protocol 117

ENCRYPT --protocol=name [Command|
This command reads the plaintext from the file descriptor set by the INPUT command,
encrypts it and writes the ciphertext to the file descriptor set by the OUTPUT command.
The server may (and should) overlap reading and writing. The recipients used for
the encryption are all the recipients set so far. If any recipient is not usable the
server should take appropriate measures to notify the user about the problem and
may cancel the operation by returning an error code. The used file descriptors are
void after this command; the recipient list is only cleared if the server returns success.

Because GpgOL uses a streaming mode of operation the server is not allowed to auto
select the protocol and must obey to the mandatory protocol parameter:

OpenPGP Use the OpenPGP protocol (RFC-2440).

CMS Use the CMS (PKCS#7) protocol (RFC-3852).

To support automagically selection of the protocol depending on the selected keys, the
server MAY implement the command:

PREP_ENCRYPT [--protocol=name] [--expect-sign] [Command]
This commands considers all recipients set so far and decides whether it is able to
take input and start the actual encryption. This is kind of a dry-run ENCRYPT with-
out requiring or using the input and output file descriptors. The server shall cache
the result of any user selection to avoid asking this again when the actual ENCRYPT
command is send. The ‘--protocol’ option is optional; if it is not given, the server
should allow the user to select the protocol to be used based on the recipients given
or by any other means.

If ‘-—expect-sign’ is given the server should expect that the message will also be
signed and use this hint to present a unified recipient and signer selection dialog if
possible and desired. A selected signer should then be cached for the expected SIGN
command (which is expected in the same session but possible on another connection).

If this command is given again before a successful ENCRYPT command, the second one
takes effect.

Before sending the OK response the server shall tell the client the protocol to be used
(either the one given by the argument or the one selected by the user) by means of a
status line:

PROTOCOL name [Status line]
Advise the client to use the protocol name for the ENCRYPT command. The valid
protocol names are listed under the description of the ENCRYPT command. The server
shall emit exactly one PROTOCOL status line.

Here is an example of a complete encryption sequence; client lines are indicated by a C:,
server responses by C::

Appendix A: The GnuPG UI Server Protocol 118

C: RESET

S: 0K

C: RECIPIENT foo@example.net
S: 0K

C: RECIPIENT bar@example.com
S: 0K

C: PREP_ENCRYPT

S: S PROTOCOL OpenPGP

Ss: 0K

C: INPUT FD=17

S: 0K

C: OUTPUT FD=18

S: 0K
C: ENCRYPT
S: 0K

A.2 UI Server: Sign a Message

The server needs to implement opaque signing as well as detached signing. Due to the
nature of OpenPGP messages it is always required to send the entire message to the server;
sending just the hash is not possible. The following two commands are required to set the
input and output file descriptors:

INPUT FD=n [Command]|
Set the file descriptor for the message to be signed to n. The message send to the
server is binary encoded. For details on the file descriptor, see the description of
INPUT in the ENCRYPT section.

OUTPUT FD=n [-binary] [Command]
Set the file descriptor to be used for the output. The output is either the complete
signed message or in case of a detached signature just that detached signature. If
the option —-binary is given the output shall be in binary format; if not given, the
output for OpenPGP needs to be ASCII armored and for CMS Base-64 encoded. For
details on the file descriptor, see the INPUT command.

To allow the server the selection of a non-default signing key the client may optionally use
the SENDER command, see [command SENDER], page 124.

The signing operation is then initiated by:

Appendix A: The GnuPG UI Server Protocol 119

SIGN --protocol=name [--detached)] [Command]
Sign the data set with the INPUT command and write it to the sink set by OUTPUT.
name is the signing protocol used for the message. For a description of the allowed
protocols see the ENCRYPT command. With option --detached given, a detached
signature is created; this is actually the usual way the command is used.

The client expects the server to send at least this status information before the final OK
response:

MICALG string [Status line]
The string represents the hash algorithm used to create the signature. It is used
with RFC-1847 style signature messages and defined by PGP/MIME (RFC-3156)
and S/MIME (RFC-3851). The GPGME library has a supporting function gpgme_
hash_algo_name to return the algorithm name as a string. This string needs to be
lowercased and for OpenPGP prefixed with "pgp-".

A.3 UI Server: Decrypt a Message

Decryption may include the verification of OpenPGP messages. This is due to the often
used combined signing/encryption modus of OpenPGP. The client may pass an option to
the server to inhibit the signature verification. The following two commands are required
to set the input and output file descriptors:

INPUT FD=n [Command]|
Set the file descriptor for the message to be decrypted to n. The message send to the
server is either binary encoded or — in the case of OpenPGP — ASCII armored. For
details on the file descriptor, see the description of INPUT in the ENCRYPT section.

QUTPUT FD=n [Command]
Set the file descriptor to be used for the output. The output is binary encoded. For
details on the file descriptor, see the description of INPUT in the ENCRYPT section.

The decryption is started with the command:

DECRYPT --protocol=name [--no-verify| [--export-session-key] [Command]|
name is the encryption protocol used for the message. For a description of the allowed
protocols see the ENCRYPT command. This argument is mandatory. If the option
‘-—no-verify’ is given, the server should not try to verify a signature, in case the
input data is an OpenPGP combined message. If the option ‘~-export-session-key’
is given and the underlying engine knows how to export the session key, it will appear
on a status line

A.4 UI Server: Verify a Message

The server needs to support the verification of opaque signatures as well as detached signa-
tures. The kind of input sources controls what kind message is to be verified.

MESSAGE FD=n [Command]
This command is used with detached signatures to set the file descriptor for the
signed data to n. The data is binary encoded (used verbatim). For details on the file
descriptor, see the description of INPUT in the ENCRYPT section.

Appendix A: The GnuPG UI Server Protocol 120

INPUT FD=n [Command]
Set the file descriptor for the opaque message or the signature part of a detached
signature to n. The message send to the server is either binary encoded or — in
the case of OpenPGP — ASCII armored. For details on the file descriptor, see the
description of INPUT in the ENCRYPT section.

OUTPUT FD=n [Command]
Set the file descriptor to be used for the output. The output is binary encoded and
only used for opaque signatures. For details on the file descriptor, see the description
of INPUT in the ENCRYPT section.

The verification is then started using:

VERIFY --protocol=name [--silent] [Command]
name is the signing protocol used for the message. For a description of the allowed
protocols see the ENCRYPT command. This argument is mandatory. Depending on
the combination of MESSAGE INPUT and OUTPUT commands, the server needs to select
the appropriate verification mode:

MESSAGE and INPUT
This indicates a detached signature. Output data is not applicable.

INPUT This indicates an opaque signature. As no output command has been
given, the server is only required to check the signature.

INPUT and OUTPUT
This indicates an opaque signature. The server shall write the signed
data to the file descriptor set by the output command. This data shall
even be written if the signatures can’t be verified.

With ‘--silent’ the server shall not display any dialog; this is for example used by the
client to get the content of opaque signed messages. The client expects the server to send
at least this status information before the final OK response:

SIGSTATUS flag displaystring [Status line]
Returns the status for the signature and a short string explaining the status. Valid
values for flag are:

none The message has a signature but it could not not be verified due to a
missing key.

green The signature is fully valid.

yellow The signature is valid but additional information was shown regarding

the validity of the key.
red The signature is not valid.

displaystring is a percent-and-plus-encoded string with a short human readable de-
scription of the status. For example

S SIGSTATUS green Good+signature+from+Keith+Moon+<keith@example.net>
Note that this string needs to fit into an Assuan line and should be short enough to
be displayed as short one-liner on the clients window. As usual the encoding of this
string is UTF-8 and it should be send in its translated form.

The server shall send one status line for every signature found on the message.

Appendix A: The GnuPG UI Server Protocol 121

A.5 UI Server: Specifying the input files to operate on.

All file related Ul server commands operate on a number of input files or directories, specified
by one or more FILE commands:

FILE [-clear| name [Command]
Add the file or directory name to the list of pathnames to be processed by the server.
The parameter name must be an absolute path name (including the drive letter) and
is percent espaced (in particular, the characters %, = and white space characters
are always escaped). If the option --clear is given, the list of files is cleared before
adding name.

Historical note: The original spec did not define --clear but the keyword
--continued after the file name to indicate that more files are to be expected.
However, this has never been used and thus removed from the specs.

A.6 UI Server: Encrypting and signing files.

First, the input files need to be specified by one or more FILE commands. Afterwards, the
actual operation is requested:

ENCRYPT_FILES —nohup [Command]|
SIGN_FILES -nohup [Command]|
ENCRYPT_SIGN_FILES —nohup [Command]|

Request that the files specified by FILE are encrypted and/or signed. The command
selects the default action. The UI server may allow the user to change this default
afterwards interactively, and even abort the operation or complete it only on some of
the selected files and directories.

What it means to encrypt or sign a file or directory is specific to the preferences of the
user, the functionality the UI server provides, and the selected protocol. Typically,
for each input file a new file is created under the original filename plus a protocol
specific extension (like .gpg or .sig), which contain the encrypted/signed file or a
detached signature. For directories, the server may offer multiple options to the user
(for example ignore or process recursively).

The ENCRYPT_SIGN_FILES command requests a combined sign and encrypt operation.
It may not be available for all protocols (for example, it is available for OpenPGP
but not for CMS).

The option --nohup is mandatory. It is currently unspecified what should happen
if ——nohup is not present. Because —-nohup is present, the server always returns 0K
promptly, and completes the operation asynchronously.

A.7 UI Server: Decrypting and verifying files.

First, the input files need to be specified by one or more FILE commands. Afterwards, the
actual operation is requested:

DECRYPT_FILES -nohup [Command]|
VERIFY_FILES -nohup [Command|

Appendix A: The GnuPG UI Server Protocol 122

DECRYPT_VERIFY_FILES -nohup [Command]
Request that the files specified by FILE are decrypted and/or verified. The command
selects the default action. The UI server may allow the user to change this default
afterwards interactively, and even abort the operation or complete it only on some of
the selected files and directories.

What it means to decrypt or verify a file or directory is specific to the preferences of the
user, the functionality the Ul server provides, and the selected protocol. Typically, for
decryption, a new file is created for each input file under the original filename minus
a protocol specific extension (like .gpg) which contains the original plaintext. For
verification a status is displayed for each signed input file, indicating if it is signed,
and if yes, if the signature is valid. For files that are signed and encrypted, the
VERIFY command transiently decrypts the file to verify the enclosed signature. For
directories, the server may offer multiple options to the user (for example ignore or
process recursively).

The option --nohup is mandatory. It is currently unspecified what should happen
if ——nohup is not present. Because —-nohup is present, the server always returns 0K
promptly, and completes the operation asynchronously.

A.8 UI Server: Managing certificates.

First, the input files need to be specified by one or more FILE commands. Afterwards, the
actual operation is requested:

IMPORT_FILES -nohup [Command]
Request that the certificates contained in the files specified by FILE are imported into
the local certificate databases.

For directories, the server may offer multiple options to the user (for example ignore
or process recursively).

The option --nohup is mandatory. It is currently unspecified what should happen
if ——nohup is not present. Because —-nohup is present, the server always returns 0K
promptly, and completes the operation asynchronously.

FIXME: It may be nice to support an EXPORT command as well, which is enabled by the
context menu of the background of a directory.

A.9 UI Server: Create and verify checksums for files.

First, the input files need to be specified by one or more FILE commands. Afterwards, the
actual operation is requested:

CHECKSUM_CREATE_FILES —nohup [Command]|
Request that checksums are created for the files specified by FILE. The choice of
checksum algorithm and the destination storage and format for the created checksums
depend on the preferences of the user and the functionality provided by the Ul server.
For directories, the server may offer multiple options to the user (for example ignore
or process recursively).

The option --nohup is mandatory. It is currently unspecified what should happen
if ——nohup is not present. Because —-nohup is present, the server always returns 0K
promptly, and completes the operation asynchronously.

Appendix A: The GnuPG UI Server Protocol 123

CHECKSUM_VERIFY_FILES —nohup [Command]
Request that checksums are created for the files specified by FILE and verified against
previously created and stored checksums. The choice of checksum algorithm and the
source storage and format for previously created checksums depend on the preferences
of the user and the functionality provided by the Ul server. For directories, the server
may offer multiple options to the user (for example ignore or process recursively).

If the source storage of previously created checksums is available to the user through
the Windows shell, this command may also accept such checksum files as FILE argu-
ments. In this case, the Ul server should instead verify the checksum of the referenced
files as if they were given as INPUT files.

The option --nohup is mandatory. It is currently unspecified what should happen
if ——nohup is not present. Because —-nohup is present, the server always returns 0K
promptly, and completes the operation asynchronously.

A.10 Miscellaneous Ul Server Commands

The server needs to implement the following commands which are not related to a specific
command:

GETINFO what [Command]|
This is a multi purpose command, commonly used to return a variety of information.
The required subcommands as described by the what parameter are:

pid Return the process id of the server in decimal notation using an Assuan
data line.

To allow the server to pop up the windows in the correct relation to the client, the client is
advised to tell the server by sending the option:

window-id number [Command option]
The number represents the native window ID of the clients current window. On
Windows systems this is a windows handle (HWND) and on X11 systems it is the X
Window ID. The number needs to be given as a hexadecimal value so that it is easier
to convey pointer values (e.g. HWND).

A client may want to fire up the certificate manager of the server. To do this it uses the
Assuan command:

START _KEYMANAGER [Command|
The server shall pop up the main window of the key manager (aka certificate manager).
The client expects that the key manager is brought into the foregound and that this
command immediately returns (does not wait until the key manager has been fully
brought up).

A client may want to fire up the configuration dialog of the server. To do this it uses the
Assuan command:

START_CONFDIALOG [Command|
The server shall pop up its configuration dialog. The client expects that this dialog is
brought into the foregound and that this command immediately returns (i.e. it does
not wait until the dialog has been fully brought up).

Appendix A: The GnuPG UI Server Protocol 124

When doing an operation on a mail, it is useful to let the server know the address of the
sender:

SENDER [--info| [--protocol=name| email [Command]
email is the plain ASCII encoded address ("addr-spec" as per RFC-2822) enclosed
in angle brackets. The address set with this command is valid until a successful
completion of the operation or until a RESET command. A second command overrides
the effect of the first one; if email is not given and ‘--info’ is not used, the server
shall use the default signing key.

If option ‘--info’ is not given, the server shall also suggest a protocol to use for
signing. The client may use this suggested protocol on its own discretion. The same
status line as with PREP_ENCRYPT is used for this.

The option ‘--protocol’ may be used to give the server a hint on which signing

protocol should be preferred.

To allow the Ul-server to visually identify a running operation or to associate operations
the server MAY support the command:

SESSION number [string] [Command]
The number is an arbitrary value, a server may use to associate simultaneous running
sessions. It is a 32 bit unsigned integer with 0 as a special value indicating that no
session association shall be done.

If string is given, the server may use this as the title of a window or, in the case of
an email operation, to extract the sender’s address. The string may contain spaces;
thus no plus-escaping is used.

This command may be used at any time and overrides the effect of the last command.
A RESET undoes the effect of this command.

Appendix B: How to solve problems 125

Appendix B How to solve problems

Everyone knows that software often does not do what it should do and thus there is a need
to track down problems. This is in particular true for applications using a complex library
like GPGME and of course also for the library itself. Here we give a few hints on how to
solve such problems.

First of all you should make sure that the keys you want to use are installed in the
GnuPG engine and are usable. Thus the first test is to run the desired operation using gpg
or gpgsm on the command line. If you can’t figure out why things don’t work, you may
use GPGME’s built in trace feature. This feature is either enabled using the environment
variable GPGME_DEBUG or, if this is not possible, by calling the function gpgme_set_global_
flag. The value is the trace level and an optional file name. If no file name is given the
trace output is printed to stderr.

For example
GPGME_DEBUG=9: /home/user/mygpgme . log

(Note that under Windows you use a semicolon in place of the colon to separate the fields.)

A trace level of 9 is pretty verbose and thus you may want to start off with a lower level.
The exact definition of the trace levels and the output format may change with any release;
you need to check the source code for details. In any case the trace log should be helpful
to understand what is going going on. Warning: The trace log may reveal sensitive details
like passphrases or other data you use in your application. If you are asked to send a log
file, make sure that you run your tests only with play data.

The trace function makes use of gpgrt’s logging function and thus the special ‘socket://’
and ‘tcp://’ files may be used. Because this conflicts with the use of colons to separate
fields, the following hack is used: If the file name contains the string ~// all carets are
replaced by colons. For example to log to TCP port 42042 this can be used:

GPGME_DEBUG=5:tcp~//127.0.0.1742042

Appendix C: Deprecated Functions 126

Appendix C Deprecated Functions

For backward compatibility GPGME has a number of functions, data types and constants
which are deprecated and should not be used anymore. We document here those which are
really old to help understanding old code and to allow migration to their modern counter-
parts.

Warning: These interfaces will be removed in a future version of GPGME.

void gpgme_key_release (gpgme_key_t key) [Function]
The function gpgme_key_release is equivalent to gpgme_key_unref.
gpgme_error_t gpgme_op_import_ext (gpgme_ctx_t ctx, [Function]
gpgme_data_t keydata, int *nr)
SINCE: 0.3.9

The function gpgme_op_import_ext is equivalent to:
gpgme_error_t err = gpgme_op_import (ctx, keydata);
if (lerr)
{
gpgme_import_result_t result = gpgme_op_import_result (ctx);
*nr = result->considered;

}

gpgme_error_t (xgpgme_edit_cb_t) (void *handle, [Data type]
gpgme_status_code_t status, const char *args, int fd)

The gpgme_edit_cb_t type is the type of functions which GPGME calls if it a key
edit operation is on-going. The status code status and the argument line args are
passed through by GPGME from the crypto engine. The file descriptor fd is -1 for
normal status messages. If status indicates a command rather than a status message,
the response to the command should be written to fd. The handle is provided by the
user at start of operation.

The function should return GPG_ERR_FALSE if it did not handle the status code, 0 for
success, or any other error value.

gpgme_error_t gpgme_op_edit (gpgme_ctx_t ctx, gpgme_key_t key, [Function]
gpgme_edit_cb_t fnc, void *handle, gpgme_data_t out)

SINCE: 0.3.9
Note: This function is deprecated, please use gpgme_op_interact instead.
The function gpgme_op_edit processes the key KEY interactively, using the edit
callback function FNC with the handle HANDLE. The callback is invoked for every
status and command request from the crypto engine. The output of the crypto engine
is written to the data object out.
Note that the protocol between the callback function and the crypto engine is specific
to the crypto engine and no further support in implementing this protocol correctly
is provided by GPGME.
The function returns the error code GPG_ERR_NO_ERROR if the edit operation completes
successfully, GPG_ERR_INV_VALUE if ctx or key is not a valid pointer, and any error
returned by the crypto engine or the edit callback handler.

Appendix C: Deprecated Functions 127

gpgme_error_t gpgme_op_edit_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, gpgme_edit_cb_t fnc, void *handle, gpgme_data_t out)
SINCE: 0.3.9

Note: This function is deprecated, please use gpgme_op_interact_start instead.

The function gpgme_op_edit_start initiates a gpgme_op_edit operation. It can be
completed by calling gpgme_wait on the context. See Section 7.8.1 [Waiting For
Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation was started
successfully, and GPG_ERR_INV_VALUE if ctx or key is not a valid pointer.

gpgme_error_t gpgme_op_card_edit (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, gpgme_edit_cb_t fnc, void *handle, gpgme_data_t out)
Note: This function is deprecated, please use gpgme_op_interact with the flag
GPGME_INTERACT_CARD instead.

The function gpgme_op_card_edit is analogous to gpgme_op_edit, but should be
used to process the smart card corresponding to the key key.

gpgme_error_t gpgme_op_card_edit_start (gpgme_ctx_t ctx, [Function]
gpgme_key_t key, gpgme_edit_cb_t fnc, void *handle, gpgme_data_t out)
Note: This function is deprecated, please use gpgme_op_interact_start with the
flag GPGME_INTERACT_CARD instead.

The function gpgme_op_card_edit_start initiates a gpgme_op_card_edit opera-
tion. It can be completed by calling gpgme_wait on the context. See Section 7.8.1
[Waiting For Completion], page 103.

The function returns the error code GPG_ERR_NO_ERROR if the operation was started
successfully, and GPG_ERR_INV_VALUE if ctx or key is not a valid pointer.

gpgme_error_t gpgme_data_new_with_read_cb (gpgme_data_t *dh, [Function]
int (*readfunc) (void *hook, char *buffer, size_t count, size_t *nread),
void *hook_value)
The function gpgme_data_new_with_read_cb creates a new gpgme_data_t object
and uses the callback function readfunc to retrieve the data on demand. As the
callback function can supply the data in any way it wants, this is the most flexible
data type GPGME provides. However, it can not be used to write data.

The callback function receives hook_value as its first argument whenever it is invoked.
It should return up to count bytes in buffer, and return the number of bytes actually
read in nread. It may return O in nread if no data is currently available. To indicate
EOF the function should return with an error code of -1 and set nread to 0. The
callback function may support to reset its internal read pointer if it is invoked with
buffer and nread being NULL and count being 0.

The function returns the error code GPG_ERR_NO_ERROR if the data object was suc-

cessfully created, GPG_ERR_INV_VALUE if dh or readfunc is not a valid pointer, and
GPG_ERR_ENOMEM if not enough memory is available.

gpgme_error_t gpgme_data_rewind (gpgme_data_t dh) [Function]
The function gpgme_data_rewind is equivalent to:

Appendix C: Deprecated Functions 128

return (gpgme_data_seek (dh, O, SEEK_SET) == -1)
7 gpgme_error_from_errno (errno) : O;

The signatures on a key are only available if the key was retrieved via a listing operation
with the GPGME_KEYLIST_MODE_SIGS mode enabled, because it is expensive to retrieve all
signatures of a key.

So, before using the below interfaces to retrieve the signatures on a key, you have to
make sure that the key was listed with signatures enabled. One convenient, but blocking,
way to do this is to use the function gpgme_get_key.

enum gpgme_sig_stat_t [Data type]
The gpgme_sig_stat_t type holds the result of a signature check, or the combined
result of all signatures. The following results are possible:

GPGME_SIG_STAT_NONE
This status should not occur in normal operation.

GPGME_SIG_STAT_GOOD
This status indicates that the signature is valid. For the combined result
this status means that all signatures are valid.

GPGME_SIG_STAT_GOOD_EXP
This status indicates that the signature is valid but expired. For the com-
bined result this status means that all signatures are valid and expired.

GPGME_SIG_STAT_GOOD_EXPKEY
This status indicates that the signature is valid but the key used to verify
the signature has expired. For the combined result this status means that
all signatures are valid and all keys are expired.

GPGME_SIG_STAT_BAD
This status indicates that the signature is invalid. For the combined result
this status means that all signatures are invalid.

GPGME_SIG_STAT_NOKEY
This status indicates that the signature could not be verified due to a
missing key. For the combined result this status means that all signatures
could not be checked due to missing keys.

GPGME_SIG_STAT_NOSIG
This status indicates that the signature data provided was not a real
signature.

GPGME_SIG_STAT_ERROR
This status indicates that there was some other error which prevented
the signature verification.

GPGME_SIG_STAT_DIFF
For the combined result this status means that at least two signatures
have a different status. You can get each key’s status with gpgme_get_
sig_status.

Appendix C: Deprecated Functions 129

const char * gpgme_get_sig_status (gpgme_ctx_t ctx, int idx, [Function]
gpgme_sig_stat_t *r_stat, time_t *r_created)
The function gpgme_get_sig_status is equivalent to:

gpgme_verify_result_t result;
gpgme_signature_t sig;

result = gpgme_op_verify_result (ctx);
sig = result->signatures;

while (sig && idx)
{
sig = sig->next;
idx—-;
}
if ('sig || idx)
return NULL;

if (r_stat)
{
switch (gpg_err_code (sig->status))
{
case GPG_ERR_NO_ERROR:
*r_stat = GPGME_SIG_STAT_GOOD;
break;

case GPG_ERR_BAD_SIGNATURE:
*r_stat = GPGME_SIG_STAT_BAD;
break;

case GPG_ERR_NO_PUBKEY:
*r_stat = GPGME_SIG_STAT_NOKEY;
break;

case GPG_ERR_NO_DATA:
*r_stat = GPGME_SIG_STAT_NOSIG;
break;

case GPG_ERR_SIG_EXPIRED:
*r_stat = GPGME_SIG_STAT_GOOD_EXP;
break;

case GPG_ERR_KEY_EXPIRED:
*r_stat = GPGME_SIG_STAT_GOOD_EXPKEY;

break;

default:

Appendix C: Deprecated Functions 130

*r_stat = GPGME_SIG_STAT_ERROR;
break;
3
X
if (r_created)
*r_created = sig->timestamp;
return sig->fpr;

const char * gpgme_get_sig_key (gpgme_ctx_t ctx, int idx, [Function]
gpgme_key_t *r_key)
The function gpgme_get_sig_key is equivalent to:

gpgme_verify_result_t result;
gpgme_signature_t sig;

result = gpgme_op_verify_result (ctx);
sig = result->signatures;

while (sig && idx)
{
sig = sig->next;
idx--;
}
if (!sig || idx)
return gpg_error (GPG_ERR_EOF);

return gpgme_get_key (ctx, sig->fpr, r_key, 0);

GNU Lesser General Public License 131

GNU Lesser General Public License

Version 2.1, February 1999

Copyright (©) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place — Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

GNU Lesser General Public License 132

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU /Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

GNU Lesser General Public License 133

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to

be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply

GNU Lesser General Public License 134

to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

GNU Lesser General Public License 135

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

¢. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components

GNU Lesser General Public License 136

10.

11.

(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

GNU Lesser General Public License 137

12.

13.

14.

15.

16.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

GNU Lesser General Public License 138

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU Lesser General Public License 139

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library
‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

GNU General Public License 140

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://fsf.org/

GNU General Public License 141

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 142

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU General Public License 143

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c¢. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 144

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU General Public License 145

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 146

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU General Public License 147

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 148

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

GNU General Public License 149

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 150

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are
welcome to redistribute it under certain conditions;
type ‘show c’ for details.
The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read https://www.gnu.org/philosophy/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/philosophy/why-not-lgpl.html

Concept Index

Concept Index

A

aborting operations............. 115
algorithms....... 15
algorithms, hash........ 16
algorithms, message digest..................... 16
algorithms, publickey 15
ArMOr MOAEttt 35
ASCIT @ITNOT .+« 35
ASSUAN . 14
attributes, of akeyol 58
auditlog. ... o 46
auditlog, of the engine............... 46
autoconf.... 5
automake. ... 5

B

backend 10

C

callback, passphrase 40
callback, progress meter 41
callback, status message 42
cancelling operations 115
canonical text model 35
certificates, included 37
OIS 14
compiler flags........o 3
compiler options............ .. .oiiiiL 3
configuration of crypto backend................ 14
context. ... i 33
context, armor mode 35
context, attributes.........o 34
context, configuring engine..................... 34
context, creation............... L 33
context, destruction oL 33
context, offline model 36
context, pinentry mode 36
context, result of operation 33
context, selecting protocol 34
context, sender 35
context, text model 35
crypto backend oo oL 10
cryptoengine........... .. il 10
cryptographic message syntax.................. 14
cryptographic operation 78
cryptographic operation, aborting............. 115
cryptographic operation, cancelling 115
cryptographic operation, decryption............ 78
cryptographic operation, decryption and
verification.......... ... o oL 88
cryptographic operation, encryption............ 92

cryptographic operation, random............... 98

151
cryptographic operation, running 103
cryptographic operation, signature check....... 82
cryptographic operation, signing 89
cryptographic operation, verification 82
cryptographic operation, wait for 103
D
data buffer, convenience 31
data buffer, creation........................... 24
data buffer, destruction........................ 28
data buffer, encoding L 29
data buffer, file name.......................... 29
data buffer, I/O operations 28
data buffer, manipulation...................... 28
data buffer, meta-data......................... 29
data buffer, read........ oL 28
data buffer, seek......... ... 28
data buffer, write..........o 28
data, exchanging L. 24
debugo 125
decryption. ... 78
decryption and verification..................... 88
deprecated ... 126
E
eNncryption. 92
ENGINE. ..ottt 10
engine, ASSUAN 14
engine, configuration of L. 14
engine, configuration per context............... 34
engine, GnuPG...........ol 14
engine, GpgSM i 14
engine, information about............. 12
EITOT COAES .+ o vttt e e ittt e e 17
error codes, list of........... 19, 20
error codes, printing of 22
error handling i 17
EITOT SOULCES. . vttt ettt e et e e e e e 17
error sources, printing of........ L 22
error strings.......... ... 22
Error Values. 17
error values, printing of, 22
event loop, external 104
F
flags, of a context............ol 42
From: o 35
G
GDK, using GPGME with 113

Concept Index

GnuPG. .. 14
GPGME_ DEBUG ... 125
GPESM. ..o 14
GTK+, using GPGME with 112

H

hash algorithms 16
header file........ 3

I

identify ... 31
include file.......... 3

K

key listing ... 55
key listing mode......... L. 38
key listing, mode of oL 38
key listing, start o o 55
key management.........ol 47
key ring, add ... 60
key ring, delete from........... 75
key ring, export from............ oL 69
key ring, import to........ oL 71
key ring, list....... i 55
key ring, search.........o ool 55
key, attributes.......... ... ool 58
key, creation....... ool 60
key, delete....... ..o 75
key, edit.... ..o 7
key, exXport 69
key, import...... 71
key, information about.......... L 58
key, manipulation............ol 59
key, Signing. ... 67

L

largefile support i 4
LS 4
LGPL, GNU Lesser General Public License ... 131
Libtool. ... 6
listing keys ... 55
locale, defaulto oL 45
locale, of a context ..., 45

M

message digest algorithms 16
multi-threading......... L 8

N

notation data.............. ... il 82, 92

152
offlinemode......... ... 36
OpenPGP 14
P
passphrase callback............ o L 40
passphrase, change 76
pinentry mode........ ... o i i i i 36
policy URLo i 92
progress meter callback................ 41
Protocol 10
protocol, ASSUAN 14
protocol, CMS. 14
protocol, GnuPGol 14
protocol, S/MIME ...t 14
protocol, selecting L. 34
public key algorithms............... 15
Qt, using GPGME with....................... 113
random bytes........... ... oL 98
run controlo 103
S/MIME ... 14
SENAET . . oot 35
SIgI . 89
signal handling L 8
signals. ... 8
signature check......... o ool 88
signature notation data 82, 92
signature, creation............ oo oL 89
signature, selecting signers..................... 89
signature, verification.......................... 82
signers, selecting........... i 89
status message callback................ 42
T
text mode 35
thread-safeness oL 8
typeofdata...........c i 31
Ulserver.......cooiiiiiiiiiiiiiiiii . 116
user interface server 116

v

validity, TOFU ... 76

Concept Index

verification 82
verification and decryption............... 88
version check, of the engines................... 11
version check, of the library..................... 6

153

Function and Data Index

Function and Data Index

A

AM_PATH_GPGME 5

C

CHECKSUM_CREATE_FILES...................... 122
CHECKSUM_VERIFY_FILES...................... 123
D

DECRYPT ... 119
DECRYPT_FILES......... ... oo, 121
DECRYPT_VERIFY_FILES....................... 121
E

ENCRYPT ... o e 117
ENCRYPT_FILES...... ...ttt 121
ENCRYPT_SIGN_FILEScoiiiiun.. 121
enum gpgme_data_encoding_t.................. 29
enum gpgme_data_type_t...................... 31
enum gpgme_event_io_t............ 105
enum gpgme_hash_algo_t...................... 16
enum gpgme_pinentry_mode_t.................. 37
enum gpgme_protocol_t 10
enum gpgme_pubkey_algo_t.................... 15
enum gpgme_random_mode_t............, 98
enum gpgme_sig_mode_t, 89
enum gpgme_sig_stat_t...................... 128
enum gpgme_tofu_policy_t.................... 76
F

FILE ... 121
G

GETINFO.... ..o 123
gpgme_addrspec_from_uid..................... 88
gpgme_cancel i 115
gpgme_cancel_async 115
gpgme_check_version 6
gpgme_ctx_get_engine_info.................. 34
gpgme_ctx_set_engine_info.................. 34
gpgme_ctX_t 33
gpgme_data_encoding_t....................... 29
gpgme_data_get_encoding..................... 30
gpgme_data_get_file name 29
gpgme_data_identify............., 32
gpgme_data_mew..............oiiiiiiiiiiin. 24
gpgme_data_new_from_cbs..................... 27
gpgme_data_new_from_estream................ 26
gpgme_data_new_from_fd................... ... 25

gpgme_data_new_from_file 25

154
gpgme_data_new_from_filepart............... 25
gpgme_data_new_from_mem..................... 25
gpgme_data_new_from_stream................. 26
gpgme_data_new_with_read_cb............... 127
gpgme_data_read............. ...l 28
gpgme_data_read_cb_t............ 26
gpgme_data_release 28
gpgme_data_release_and_get_mem............. 28
gpgme_data_release_cb_t..................... 27
gpgme_data_rewind L 127
gpgme_data_seek............. ...l 29
gpgme_data_seek_cb_t.............. . ..l 27
gpgme_data_set_encoding..................... 30
gpgme_data_set_file_name 29
gpgme_data_set_flag......................... 31
gpgme_data_t 24
gpgme_data_type_t............ ol 31
gpgme_data_write............. ... 28
gpgme_data_write_cb_t....................... 27
gpgme_decrypt_result_t...................... 80
gpgme_edit_cb_t........ o ool 126
gpgme_encrypt_result_t...................... 97
gpgme_engine_check_version................. 12
gpgme_engine_info_t......................... 12
gpgme_err_code................iiiiiiiia 18
gpgme_err_code_from_errno.................. 19
gpgme_err_code_t........ i 17
gpgme_err_code_to_e€rrno..................... 19
gpgme_err_make...................iiiiiaa 18
gpgme_err_make_from_errno 18
EPEME _EXT _SOUTCE .. tininnnnnnnnnns 18
gpgme_err_source_t 17
ey eJza: ISTI=Y o o o ol 18
gpgme_error_from_errno...................... 18
EPEME_ETXTOT _ £ ouuvttiiii et 17
gpgme_error_t (xgpgme_assuan_data_cb_t)

(void *opaque, const void *data,
size_t datalen) 100

gpgme_error_t (*gpgme_assuan_inquire_cb_t)

(void *opaque, const char *name,

const char *args, gpgme_data_t *r_data)

... 100
gpgme_error_t (*gpgme_assuan_status_cb_t)

(void *opaque, const char *status,

const char *args)ccovuuun...
gpgme_error_t (xgpgme_edit_cb_t)

(void *handle,

gpgme_status_code_t status,

const char *args, int fd)............. 126
gpgme_error_t (xgpgme_interact_cb_t)

(void *handle, const char *status,

const char *args, int fd).............. 7
gpgme_error_t (*gpgme_io_cb_t) (void *data,

int £d) ..o 104

Function and Data Index

gpgme_error_t (*kgpgme_passphrase_cb_t) (void
xhook, const char *uid_hint, const char
*passphrase_info, int prev_was_bad,
int £d) o 40
gpgme_error_t (kgpgme_register_io_cb_t)
(void *data, int fd, int dir,
gpgme_io_cb_t fnc, void *xfnc_data,
void *#*ktag) ... 104
gpgme_error_t (kgpgme_status_cb_t) (void
*hook, const char *keyword, const char

KATES) oottt 42
gpgme_event_io_t.............. 105, 106
gpgme_free.....................l 28
gpgme_genkey_result_t....................... 66
gpgme_get _armor...............oiiiiiiiiaannn. 35
gpgme_get_ctx_flag................... 45
gpgme_get_dirinfo............l 11
gpgme_get_engine_info................. 13
gpgme_get_include_certs..................... 38
gpgme_get_io_cbs..........l 106
gpgme_get_key 58
gpgme_get_keylist_mode...................... 40
gpgme_get_offline............................ 36
gpgme_get_passphrase_cb..................... 41
gpgme_get_pinentry_mode..................... 36
gpgme_get_progress_cb............. 41
gpgme_get_protocol 34
gpgme_get_protocol_name..................... 10
gpgme_get_sender........... ..., 35
gpgme_get_sig keyl 130
gpgme_get_sig_status....................... 129
gpgme_get_status_cb............l 42
gpgme_get_textmode 36
gpgme_hash_algo_name........................ 16
gpgme_hash_algo_t............................ 16
gpgme_import_result_t....................... 74
gpgme_import_status_t................. 73
gpgme_interact_cb_t............ 7
gpgme_invalid key_t............., 78
gpgme_io_cb_t........... ool 104
gpgme_key_refl 59
gpgme_key_release 126
gpgme_key_sig t................ il 53
gpgme_Key_t 47
gpgme_key_unref........l 59
gpgme_keylist_result_t...................... 57
BPEME _TIEW .« vttt 33
gpgme_new_signature_t....................... 91
gpgme_off _t...... il 24
gpgme_op_adduid............. ...l 63
gpgme_op_adduid_start....................... 63
gpgme_op_assuan_transact_ext.............. 101
gpgme_op_assuan_transact_start 101
gpgme_op_card_edit, 127
gpgme_op_card_edit_start 127
gpgme_op_createkey ...l 60
gpgme_op_createkey_start 62

gpgme_op_createsubkey................... ... 62

155
gpgme_op_createsubkey_start................ 63
gpgme_op_deCrypt.ottt 78
gpgme_op_decrypt_ext 79
gpgme_op_decrypt_ext_start................. 80
gpgme_op_decrypt_result..................... 81
gpgme_op_decrypt_start...................... 79
gpgme_op_decrypt_verify..................... 88
gpgme_op_decrypt_verify_start.............. 88
gpgme_op_delete.............. 76
gpgme_op_delete_ext, 75
gpgme_op_delete_ext_start 75
gpgme_op_delete_start....................... 76
gpgme_op_edit........ ...l 126
gpgme_op_edit_start........................ 127
gpEgme_Op_encrypt... ... 93
gpgme_op_encrypt_ext 95
gpgme_op_encrypt_ext_start................. 97
gpgme_op_encrypt_result..................... 97
gpgme_op_encrypt_sign....................... 98
gpgme_op_encrypt_sign_ext 98
gpgme_op_encrypt_sign_ext_start 98
gpgme_op_encrypt_sign_start................ 98
gpgme_op_encrypt_start...................... 95
EPEME_OP_€XPOTET .ottt 70
gpgme_op_exXport_ext 70
gpgme_op_export_ext_start 70
gpgme_op_export_keys............... ... 71
gpgme_op_export_keys_start 71
gpgme_op_export_start....................... 70
gPEme_Op_genKeyvvviiiii 65
gpgme_op_genkey_result...................... 66
gpgme_op_genkey_start....................... 66
gpgme_op_getauditlog........................ 46
gpgme_op_getauditlog_start................. 47
gpgme_op_import...... il 71
gpgme_op_import_ext.............. 126
gpgme_op_import_keys 72
gpgme_op_import_keys_start 72
gpgme_op_import_result...................... 75
gpgme_op_import_start....................... 72
gpgme_op_interact.............. 7
gpgme_op_interact_start..................... 78
gpgme_op_keylist_end........................ 56
gpgme_op_keylist_ext_start................. 55
gpgme_op_keylist_from_data_start.......... 56
gpgme_op_keylist_next....................... 56
gpgme_op_keylist_result..................... 58
gpgme_op_keylist_start...................... 55
gpgme_op_keysign......................L 67
gpgme_op_keysign_start...................... 68
gpgme_op_pPassWd. ...t 76
gpgme_op_passwd_start....................... 76
gpgme_op_query_swdb........................ 102
gpgme_op_query_swdb_result................ 102
gpgme_op_random_bytes....................... 99
gpgme_op_random_values.............c.ouuuunn. 99
gpgme_op_receive_keys....................... 73
gpgme_op_receive_keys_start................ 73

Function and Data Index

gPEMEe _OP_TeVSIigZ. .. oot 68
gpgme_op_revsig_start....................... 68
gpgme_op_revuid............l 64
gpgme_op_revuid_start....................... 64
gpgme_op_set_ui_flag........................ 64
gpgme_op_set_uid_flag start................ 65
gpgme_op_setexpire 59
gpgme_op_setexpire_start 59
gpgme_op_setownertrust...................... 59
gpgme_op_setownertrust_start............... 60
gPEMe_Op_Signt 90
gpgme_op_sign result................... ... 91
gpgme_op_sign_start 91
EPEME _OP_SPAWIL . . vttt et it e e 99
gpgme_op_spawn_start............... ... 100
gpgme_op_tofu_policy..............ooiiiiia 7
gpgme_op_tofu_policy_start................. 7
gpgme_op_verify........l 82
gpgme_op_verify_ext 82
gpgme_op_verify_ext_start.................. 83
gpgme_op_verify result...................... 87
gpgme_op_verify_start....................... 82
gpgme_passphrase_cb_t....................... 40
gpgme_pinentry_mode_t....................... 37
gpgme_progress_cb_t il 41
gpgme_protocol _t.......... ... 10, 12
gpgme_pubkey_algo_name...................... 16
gpgme_pubkey_algo_string 16
gpgme_pubkey_algo_t 15
gpgme_query_swdb_result_t................. 101
gpgme_random_mode_t 98
gpgme_recipient_t..........l 80
gpgme_register_io_cb_t............... 104
gPEgMme_Trelease ... 33
gpgme_result_ref....... 33
gpgme_result_unref 33
gpgme_revocation_key_t.............. 55
gpgme_Set_armor..........oouiuiiiiiniaaa.... 35
gpgme_set_ctx_flag 42
gpgme_set_engine_info................. 14
gpgme_set_global _flag........................ 6
gpgme_set_include_certs..................... 37
gpgme_set_io_cbs............l 106
gpgme_set_keylist_mode...................... 38
gpgme_set_locale...........coiiiiiiiiiiiiian. 45
gpgme_set_offline................. 36
gpgme_set_passphrase_cb..................... 40
gpgme_set_pinentry _mode..................... 36
gpgme_set_progress_cb............... 41
gpgme_set_protocol 34
gpgme_set_sender.................. 35
gpgme_set_status_cb............ 42
gpgme_set_textmode 35
gpgme_sig mode_t............ ..., 89
gpgme_sig_notation_add...................... 92
gpgme_sig_notation_clear 92
gpgme_sig_notation_get................ 92

gpgme_sig notation_t............... 83

156
gpgme_sig_stat_t........... oL 128
gpgme_sign result_t......................... 91
gpgme_signature_t............................ 84
gpgme_signers_add..............o oL 89
gpgme_signers_clearciiiiiiiin. 89
gpgme_signers_count 89
gpgme_signers_enum.......................... 89
gpgme_ssize_t....... i 24
gpgme_status_cb_t............. ...l 42
gPEME_StIrerTort 22
gpgme_Strerror_T.. ... 22
gPEgMe_StrSOUrCe.t 22
gpgme_subkey_t.............l 49
gpgme_tofu_info_t........... o Ll 52
gpgme_tofu_policy_t.........oiiiiiiii... 76
gpgme_user_id_t............. ool 51
gpgme_validity_t.................l 58
gpgme_verify_result_t....................... 87
gpgme_wait oo ool 103
I
IMPORT_FILESo i 122
INPUTt 116, 118, 119, 120
M
MESSAGE i 119
MICALG ..ttt et 119

@)

off_t (*gpgme_data_seek_cb_t) (void *handle,

off_t offset, int whence)............... 27
OUTPUT . ..ot 116, 118, 119, 120
PREP_ENCRYPT i 117
PROTOCOL . ..ottt e et e 117
RECIPIENT.o 116
SENDERt e 124
SESSION e 124
SIGN .ottt 119
SIGN_FILES ... e 121
SIGSTATUS. ... e e 120

ssize_t (*gpgme_data_read_cb_t)
(void *handle, void *buffer, size_t size)

... 26
ssize_t (*gpgme_data_write_cb_t)

(void *handle, const void *buffer,

SiZe_t SIZE€) oo 27

Function and Data Index

START_CONFDIALOG.oiuviiiiniinnannnn 123
START_KEYMANAGER............ ..ot 123
struct gpgme_data_cbs 27
struct gpgme_io_cbs 106

\%

VERIFY ..o 120
VERIFY _FILES i, 121
void (*gpgme_data_release_cb_t)

(void *handle)coiineeennnnn.. 27

157

void (*gpgme_event_io_cb_t) (void *data,
gpgme_event_io_t type, void *type_data)
... 105
void (*gpgme_progress_cb_t) (void *hook, const
char *what, int type, int current, int
total) ..ot 41
void (*gpgme_remove_io_cb_t) (void *tag)

	Introduction
	Getting Started
	Features
	Overview

	Preparation
	Header
	Building the Source
	Largefile Support (LFS)
	Using Automake
	Using Libtool
	Library Version Check
	Signal Handling
	Multi-Threading

	Protocols and Engines
	Engine Version Check
	Engine Information
	Engine Configuration
	OpenPGP
	Cryptographic Message Syntax
	Assuan

	Algorithms
	Public Key Algorithms
	Hash Algorithms

	Error Handling
	Error Values
	Error Sources
	Error Codes
	Error Strings

	Exchanging Data
	Creating Data Buffers
	Memory Based Data Buffers
	File Based Data Buffers
	Callback Based Data Buffers

	Destroying Data Buffers
	Manipulating Data Buffers
	Data Buffer I/O Operations
	Data Buffer Meta-Data
	Data Buffer Convenience Functions

	Contexts
	Creating Contexts
	Destroying Contexts
	Result Management
	Context Attributes
	Protocol Selection
	Crypto Engine
	How to tell the engine the sender.
	ASCII Armor
	Text Mode
	Offline Mode
	Pinentry Mode
	Included Certificates
	Key Listing Mode
	Passphrase Callback
	Progress Meter Callback
	Status Message Callback
	Context Flags
	Locale
	Additional Logs

	Key Management
	Key objects
	Listing Keys
	Information About Keys
	Manipulating Keys
	Generating Keys
	Signing Keys
	Exporting Keys
	Importing Keys
	Deleting Keys
	Changing Passphrases
	Changing TOFU Data
	Advanced Key Editing

	Crypto Operations
	Decrypt
	Verify
	Decrypt and Verify
	Sign
	Selecting Signers
	Creating a Signature
	Signature Notation Data

	Encrypt
	Encrypting a Plaintext

	Random
	How to get random bytes

	Miscellaneous operations
	Running other Programs
	Using the Assuan protocol
	How to check for software updates

	Run Control
	Waiting For Completion
	Using External Event Loops
	I/O Callback Interface
	Registering I/O Callbacks
	I/O Callback Example
	I/O Callback Example GTK+
	I/O Callback Example GDK
	I/O Callback Example Qt

	Cancellation

	The GnuPG UI Server Protocol
	UI Server: Encrypt a Message
	UI Server: Sign a Message
	UI Server: Decrypt a Message
	UI Server: Verify a Message
	UI Server: Specifying the input files to operate on.
	UI Server: Encrypting and signing files.
	UI Server: Decrypting and verifying files.
	UI Server: Managing certificates.
	UI Server: Create and verify checksums for files.
	Miscellaneous UI Server Commands

	How to solve problems
	Deprecated Functions
	GNU Lesser General Public License
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS
	How to Apply These Terms to Your New Programs

	Concept Index
	Function and Data Index

